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Abstract. Many time series variables such as rainfall, industrial produc- 
tion, and sales exist only in some aggregated forms. To see the implication of 
time series aggregation it is important to know the limiting behavior of the 
time series aggregates. From the relationship of autocovariances between 
the underlying time series variable and its aggregates, we show that the 
limiting behavior of time series aggregates is closely related to the 
eigenvalues and the eigenvectors of the aggregation operator. Specifically, 
the vector of admissible autocorrelations of the limiting model for the time 
series aggregates is the eigenvector associated with the largest eigenvalue of 
the aggregation transformation. This provides an interesting and simple 
method for deriving the limiting model for time series aggregates. Systematic 
sampling of time series can be treated similarly. The method is illustrated 
with an empirical example. 

Key words and phrases: Time series, aggregation, systematic sampling, 
ARIMA process, autocovariance, limiting model. 

1. Introduction 

Some time series variables such as the price of a given commodi ty  and the 
temperature  at a given place exist at every time point. Other variables such as 
industrial production and sales exist only through aggregation over a time 
interval. Unless the time series analyst is also the data collector, he or she often 
cannot  choose the time unit or interval for which observations are provided. 
For  example, in the stock market  the often reported series is the daily closing 
price obtained by a systematic sampling, and imports and exports are 
normally aggregated and published by a government agency in terms of a 
month  or a quarter  but not for shorter intervals. Thus, the generating time 
unit for an underlying variable may not be the same as the observation time 
unit for which data  are available. To draw a proper conclusion based on the 
analysis of time series data, it is of  importance to examine the consequence of 
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data sampling and aggregation. Recent studies on this topic include Tiao 
(1972), Harvey (1981), Abraham (1982), Wei (1982), Weiss (1984), Lutkepohl 
(1986), Stram and Wei (1986) and many others. 

Suppose the underlying generating process {Xt} follows an autoregres- 
sive integrated moving average ARIMA (p, d, q) process 

( l . l )  q~p(B)(1 - B ) d x t  = Oq(B)at , 

where B is the backshift operator such that BXt=Xt -1 ,  ~bp(B)= (1 -~blB . . . . .  
4~pBP), Oq(B)--(1-01B . . . . .  OqBq), and {at} is a white noise process of zero 
mean and constant variance a 2. We also assume that the autoregressive 
polynomial 4~p(B) satisfies the stationarity condition with its roots being 
outside the unit circle. The roots of the moving average polynomial Oq(B) c a n  

be outside or on the unit circle. If the roots of the moving average polynomial 
Oq(B) are also outside the unit circle, then the model is said to be invertible. We 
call a model admissible if both its autoregressive and moving average 
polynomials satisfy the conditions of stationarity and invertibility. A set of 
autocorrelations is said to be admissible if it corresponds to an admissible 
model. 

Let the observed time series {Yr} be the m-period nonoverlapping 
aggregates of {Xt} defined as 

raT 
(1.2) Yr = X Art 

t=ra( T-1)+ l 

= (1 + B + ... + Bm-1)XmT, 

where (1 -B)dxt  for some d_>0 is stationary but not necessarily invertible. Let 
Wt=(1-B)dXt and Ur=( i - -~)dYr where ~ is the backshift operator on the 
aggregate time unit Tsuch that ~4Yr= Yr-~. Stram and Wei (1986) show that 
the autocovariance function 7w(k) for { Wt} and the autocovariance function 
7v(k) for { Ur} are related as follows. 

LEMMA 1.1. yv(k)=(1 +B+'" +Bin-l) 21d+l)),w(mk+(d+ l ) (m-  1)) where 
B now operates on the index ofyw(j) such that B),w(j)=yw(j-1). 

For a fixed m and when (1-B)aXt is also invertible, Stram and Wei 
(1986) derive exact autoregressive and moving average orders of the aggregate 
model for { Yr}. In a special case when the underlying series {Xt} follows an 
ARIMA(p, d, q) model withp=0,  i.e., an IMA(d, q) model, they show that 
the aggregate series {Yr} follows an IMA(d, Q) process with Q<[d+ 1+ 
(q -d -1 ) /m]  where [z] denotes the integer part of z. For a limiting case, Tiao 
(1972) obtains the following interesting result in terms of the binomial 
coefficients. 
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LEMMA 1.2. Suppose that {X~}follows an admissible A R I M A ( p ,  d, q) 
model in ( 1.1 ). When m--*oo, the admissible limiting model for  { Yr} exists and 
equals the IMA(d,  d) process whose d-th difference sequence is a stationary 
process with the following autocorrelation function 

(1.3) 

X ( - l ) J (d  + 1 - k _ j ) 2 d ,  l 
pS=)(k) = j=o 

d ( 2 d ;  2) _ j ) 2 d + l  X • (-1)J(d + 1 
j=O 

which is independent o f  p and q. 

The result of L e m m a  1.2 implies that  the limiting process of the t ime 
series aggregate f rom a stationary model  is white noise. It follows that  the 
limiting aggregate process f rom an A R I M A ( p ,  d, q) model  in (1,1) with its 
autoregressive polynomial  being stationary but its moving average poly- 
nomial  not  necessarily being invertible is still an IMA(d,  d) model.  However, 
unless the underlying moving  average polynomial  is invertible, the limiting 
autocorrelat ion funct ion may not be invertible. Consider  the following non- 
invertible MA(1) process with 01 (B)=( I -B) :  

(1.4) Xt = (1 - B)at.  

Since 

Yr = (I + B + ... + Bm-1)Xmr 
= (1 + B + ... + Bin-l)(1 - B)amr 
= (1 - Bm)amr, 

it follows that  

(1.5) Yr = (1 - ~ ) e r ,  

where the er is white noise. That  is, the aggregate model  is also non-invertible 
with the moving average polynomial  being (1 - ~ ) .  In summary,  we have the 
following lemma. 

LEMMA 1.3. Let {Xt} be an A R I M A ( p ,  d, q) model in (1.1) with a 
stationary autoregressive polynomial qbp( B ). Then the limiting model for  { Yr} 
is an IMA(d,  d)process. Furthermore, if 1 is a root of  the moving average 
polynomial for  the {Xt} process, then 1 is also a root of  the moving average 
polynomial for  { Yr}. 

Using the results of Lemmas  1.1, 1.2 and 1.3, we develop in this paper  an 
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alternative method to calculate the autocorrelations and hence the parameters 
of the admissible limiting model of the time series aggregates. We start with 
the transformation matrix for aggregation in the next section. 

2, Aggregation matrix for autocovariances 

Let the first (d+l)  autocovariances for the aggregate 
(1-~)dYr} be ~,v(0), yu(1),..., yv(d). Lemma 1.1 implies that 

series { Ur= 

(2.1) 

y~(o) 
yv!l) 

y id) 
= A  

yw( - (d  + l ) ( m -  1)) 
yw( - (d  + 1 ) (m-  1)+ l) 

yw(o) 

yw(md + (d + 1)(m - 1)) 

The A in (2.1) is a (d+ 1)×N0 aggregation matrix, where No=[md+2(d+ 1) 
(m-  1 ) + 1 ], equal to 

C' ONo-Nj 
Otrn C" ONo-rn-U, 
O"2m C p 0No-2m Nt 

Otdm C' 

where c' is a 1 ×N1 row vector of ci, where Nl=[2(d+ l ) (m-  1)+ 1]. The ci's are 
the coefficients of B i in the polynomial (1 +B+-.. +Bin-l) 21a+ll, and 0,~ is a 1 ×n 
row vector of zeroes. Since yw(-k)=yw(k) for all k, we can delete the first 
(d+ l ) (m-  1) columns in A corresponding to yw(-(d+ 1)(m- 1)),..., yw(- 1) by 
adding them to the columns corresponding to yw((d+l)(m-l)),..., yw(1), 
respectively• This gives 

(2.2) 

yu(O) 
yv!l) 

= Ad 

yw(O) 
)'w(1) 

yw(md + (d + l)(m - 1)) 

where Am a is the corresponding (d+ 1) × (rod+ (d+ 1)(m- 1) 1) matrix resulting 
from this deletion and addition. 

To study the limiting model, by Lemmas 1.2 and 1.3, we need only 
consider the case where the underlying process Xt follows an IMA(d, d) 
model. Hence yw(j)=0 forj>d, and we can further eliminate these yw(j)'s and 
the unnecessary columns in A corresponding to yw(j) forj>d.  The resulting 
A~ becomes a (d+ 1) x (d+ 1) square matrix. We denote this matrix by Aa,,(d) to 
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emphasize the fact that this is the aggregation matrix of the linear 
transformation which maps the autocovariances, yw(0's, of the underlying 
IMA(d, d) model for {X,} to the autocovariances, yu(j)'s, of the IMA(d, d) 
aggregate model for { Yr}, when Yris the m-period nonoverlapping aggregate 
of X:s. From the construction, it is easily seen that this aggregation matrix 
Ad(d) is nonsingular. 

3. Eigenstructure of the aggregation matrix and the limiting aggregate 
model 

For a given autocorrelation vector p'w=(pw(0), pw(l),..., pw(d)) where 
pw(i)=yw(O/yw(O), let p'v=(pu(O), pu(1),..., pv(d)) be the corresponding 
autocorrelation vector for the aggregate series where pu(O=Tv(O/yv(O). It is 
easy to see that 

(3.1) pu = A d(d)pw/ a{pw , 

where af is the first row of Ad(d). Note that 

(3.2) afpw = a(yw/yw(O) , 

where yw=(yw(O), yw(1),..., yw(d))'. Now yw(O) is the variance of{ W,} and by 
(2.2), a(yw=yd0) which is the variance of {U r}. Hence, afpw>O and the 
aggregation transformation defined in (3.1) is continuous over the set of {pw}. 
This leads to the following result. 

LEMMA 3.1. Letf m be the m-periodaggregation transformation given 
in (3.1). Ifl!m fm(pw) = p, then fm(p)=p. 

PROOF.  

Thus 

limfm(pw)=p implies that ~imf m' (pw)=p. B u t f  " '=fm (fro k '). 

• m k - t  k-i  

p = l i m f ~ ( f  (pw)) = f ( l i m m f  m (pw)) =fro(p). [] 

Lemma 3.1 implies that the autocorrelation vector of a limiting model is 
unaffected by aggregation. Hence by (3.1) the limiting autocorrelation vector 
p is seen to be the eigenvector of the aggregation matrix Ad(d) with the 
associated eigenvalue a~p. The problem is that, unless the model is properly 
specified, p may not be admissible. For example, by Lemma 1.3 if {Xt} follows 
a non-invertible IMA(1,1) model, the limiting process for {Yr} is also a 
non-invertible IMA(I,1) model. In other words, the aggregate of a mis- 
specified non-invertible MA(I) model Wt=(1-B)a, where Wt=(1-B)X~ is 
again a non-invertible MA(1) model Ur=(1 - ~ ) e r w h e r e  Ur=(1 - ~ )  ]"rand er 
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is white noise. Hence p ' = [ l , l / 2 ]  will be one of the eigenvectors for the 
aggregation matr ix Am~(1) relating the misspecified variables Wr and Ur. But 
this p is not admissible. More  generally, let 0!~1(~) be the i-th order MA 
polynomial  corresponding to an admissible limiting model. Then for any 
given d, 

Ur = (1 - ?.qa')a Yr = (1 - ~)~O(a~-i)(,°/d)er, 

for i--0, 1,..., d are (d+ 1) limiting models whose autocorrelat ion vectors are 
unaffected by aggregation, al though all these models other than i--0 are 
misspecified and hence can be simplified. These (d+ 1) autocorrelat ion vectors 
are clearly linearly independent as their generating polynomials (1 --~)i0td-~)(~) 
for i=0, 1,..., d are clearly not linearly related, as each of the polynomials  for 
i=0, 1,..., d contains exactly i roots equal to 1. 

Since in application, especially in forecasting, we often consider only an 
invertible model, we shall prove the following useful theorem. 

THEOREM 3.1. The admissible autocorrelation vector pJ~ o f  the 
limiting aggregate model 

(1 - ~ )a Yr = 0td~q(J~)er , 

is the eigenvector associated with the largest eigenvalue, 2=ax, of  A d(d), where 
an eigenvector is scaled so that its first element equals 1. 

PROOF. By Lemmas  1.2 and 3.1, we need consider only the case where 
the underlying process follows an admissible IMA(d,  d) model. Let pff= (p w(0), 
pw(1),..., p w(d)) be its admissible autocorrelat ion vector. We have 

~m fmk(pw) --- p(d ~) , 

where we take the limit through m ~. In terms of Ad(d), we have 

lim (A~(d))k pw/ a[,mkpw = p~d ®) 
k ~  ~ 

where ~',mk is the first row of the matr ix (Ad(d)) k which can be easily seen to be 
equal to Admk(d). NOW, for given d let ptdTil be equal to the autocorrelat ion 
vector of the model  

UT = (1 - - ~ ) a Y T  = (1 --~d)i0td~-i)(S23)eT, 

for i=0, 1,..., d. Since these autocorrelat ion vectors are linearly independent ,  
they form a basis for R d+l, and we can write 
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d 
(3.3) pw = ~-~ cip(d~-2 

i=0 

for some constants c~ which are not all equal to 0. t=) Let pmax be the eigenvector 
associated with 2 . . . .  We want to show"--"  -t®) _to~) tH~tt pmax=pd . TO prove this, let C~ax be 
the constant which multiplies p~maJx in (3.3). From Stram and Wei (1986) we 
know that the set of admissible autocorrelations for an IMA(d, d) model is 
open. Thus we can choose an admissible pry so that Cmax~0. Now 

d 
~/'tm~t..i)) p'Adz-'r""k-w ~ ~ 3 k  _(~) ~--" c iA  ipd-i  , 

i=0 

d k 
and a{,,,,kpW =iE=oCi2 i where 2i is the associated eigenvalue for the eigenvector ptdTil 

of Ad,,(d). Hence 

' A d k a" p~OO) = tim=f" (pw) = l i m  (re(d)) pw/ l,mkpW 

= l i m { ( ~  Ci)tkip(d~_)i)/(~ ci2k.)] -1~) = pmax • [] 
k ~°~ i=0 i=0 

The parameter value 0/ in  0J=l(~) can then be obtained through the 
relationship between pJ=l(i)'s and Oi's of a moving average model. 

4. An illustrative example with concluding remarks 

To illustrate the above results, let us consider the monthly unemployed 
females per 1000 persons between the ages of 16 and 19 in the United States 
from January 1961 to December 1985. The data is from the "Economic 
Report  of the President" published by the United States Government Printing 
Office, Washington, D.C. from 1961 to 1985. There are a total of 300 
observations. Tables 1 and 2 show the sample autocorrelation functions of the 
original series and its first differences. It is evident that the original series {X,} 
is nonstationary and the series of its first differences {(1-B)Xt} is stationary. 

Table 1. Sample autocorrelationspz(k)of{X,}. 

k 1 2 3 4 5 6 7 8 

~z(k) .97 .96 .95 .94 .93 .93 .92 .91 

Table 2. Sample autocorrelations ~w(k) of{(l-B)Xt}={Wt}. 

k I 2 3 4 5 6 7 8 

fiw(k) -.41 .06 - .08 .06 - .09  .07 - .03  .07 
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To examine the limiting behavior of the autocorrelation function of the 
aggregates, we compute the sample autocorrelations of Yr for m = 6 and m = 12 
corresponding to semi-annual and annual total of the unemployed females. 
The autocorrelations for { Yr} show nonstationarity. Table 3 shows the 
autocorrelations of the differenced aggregates, i.e., U r = ( 1 - ~ )  Yr. 

Is the above phenomenon expected? To answer the question, let us derive 
the admissible autocorrelations p[°°)(O) and p~°°l(1) of the limiting aggregate 
model 

(1  - ) YT = 

Take m=2 and consider the limit of m k as k -oo. For m=2 and d= 1, Lemma 
1.1 gives yv(k)=(l+B) 4 yw(2k+2), and (2.1) and (2.2) imply that 

1 4 6 4  1 0 0 ]  
A =  0 0 1 4 6 4 1  ' 

A~ [ 6 8 2 0 0  ] 
2= 1 4 6 4  1 ' 

and her.ce 

The characteristic equation, det(A~(1)-2I)=0, is 

2 2 -  102+ 1 6 = 0 ,  

and the eigenvalues are easily seen to be 2 and 8. Thus, 2max'8 and its 
corresponding eigenvector is the solution of the system of equations, 
A 1 ( 2(1)-8I)x=0, i.e. 

Table 3. 

m = 6  

Sample autocorrelations fi v(k) of {(1 - ~ ) 1I,} = { U,}. 

k 1 2 3 4 5 6 7 8 

/~u(k) .25 - .21  - . 2 2  - . 03  .19 .08 .21 - . 17  

k 1 2 3 4 5 6 7 8 

fly(k) .34 .03 .05 - . 20  - . 12  - . 1 0  - . 1 6  - .01  

rn= 12 
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- 2  8 X1 
1 

Since rank(A2~(1)-8/)= 1, there is one free variable and it can easily be shown 
that an associated eigenvector is 

X2 Xl 

The admissible autocorrelation structure of the limiting aggregate model 
becomes 

pl = [ 1 

Thus, the result shown in Table 3 is expected from the limiting behavior of 
temporal aggregates. 

This result may not be evident purely based on empirical values. For 
example, with 300 observations of At, Table 2 clearly implies an IMA(1,1) 
model for {X~}. The result with m = 6  as shown in Table 3 also implies an 
IMA(1,1) model for the aggregates { Yt }. When m = 12, the standard deviation 
of/Su(k) is approximately equal to .2 and hence as shown in Table 3, the 
sample autocorrelation for this case indicates a white noise phenomenon. 
However, while the value of/~u(k) is - .41 for {(1 -B)Xt},  it changes to .34 for 
{ ( 1 - ~ )  Yt} when m=6  and to .25 for {(1-?~) Yr} when m= 12. This reduction 
in /~u(k) is a direct effect of temporal aggregation. The limiting model 
IMA(1,1) is a correct one to be used for the aggregates and not the white noise 
model. 

It is interesting and useful to note that in deriving the limiting aggregate 
model the rn in Ad(d) can be any integer larger than or equal to 2. The limit 
can then be taken through m k as k----~. Specifically, as shown in the above 
example, we can choose m--2 which greatly simplifies the calculation of the 
coefficients of B i in the polynomial (I+B+...+Bm-~) 2(a+~) and hence the 
construction of Adm(d). 

Systematic sampling of time series can be treated in much the same 
fashion as aggregation is here. This follows because the relationship between 
the autocovariances of an ARIMA(p,  d + l ,  q) series X, and those of a 
systematically sampled series, Zr=Xmr, is exactly the same as between those of 
a basic ARIMA(p ,  d, q) Xt series and those of an aggregated Yr series. Thus, 
let sd+l(d) be the systematic sampling operator. We have Sdm÷l(d)=Ad(d), and 
as shown in Wei (1981) they have the same eigenstructures. 
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