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Summary

By use of the algebraic structure, we obtain a simplified expression
for the outlier-insensitivity factor for balanced fractional 2™ factorial
(2~-BFF) designs of resolution 2/41 derived from simple arrays (S-
arrays), whose measure has been introduced by Ghosh and Kipngeno
(1985, J. Statist. Plann. Inference, 11, 119-129). It is defined by use
of the measure suggested by Box and Draper (1975, Biometrika, 62 (2),
347-352). As examples, we study the sensitivity of A-optimal 2"-BFF
designs of resolution VII (i.e., [=38) given by Shirakura (1976, Ann.
Statist., 4, 515-531 ; 1977, Hiroshima Math. J., 7, 217-285). We observe
that these designs are robust in the sense that they have low sensi-
tivities.

1. Introduction

The concept of a balanced array (B-array) was introduced and first
studied by Chakravarti [2]. A general connection between a B-array
of strength 2/ and a 2"-BFF design of resolution 2l41 was established
by Yamamoto, Shirakura and Kuwada [15]. Furthermore, these authors
([16]) obtained an explicit expression for the characteristic polynomial of
the information matrix of a 2"-BFF design of resolution 2/+1 by utiliz-
ing the decomposition of the triangular multidimensional partially bal-
anced (TMDPB) association algebra into its [4+1 two-sided ideals. This
polynomial includes the results obtained by Srivastava and Chopra [12]
as a special case. A- and/or D-optimal 2"-BFF designs of resolution V
and VII have been obtained by several authors (e.g., Shirakura [9] and
[10] and Srivastava and/or Chopra [3]-[7], [13] and [14]).
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As a measure of sensitivity in the sense that the design should be
insensitive to wild observations, Box and Draper [1] introduced the sum
of squares of diagonal elements of the projection matrix, when the
number of observations and the number of unknown effects in the
model assumed are both fixed. Recently, using the measure suggested
by Box and Draper [1], Ghosh and Kipngeno [8] have defined a new
measure of robustness of a design with respect to outliers, which is
called the “outlier-insensitivity factor”, and they have found these
values for A-optimal 2"-BFF designs of resolution V given by Srivastava
and/or Chopra [3]-[7], [13] and [14].

In this paper, we obtain a simplified expression for the outlier-
insensitivity factor for a 2"-BFF design of resolution 2/+1 derived from
an S-array, by use of the properties of the TMDPB association scheme
and its algebra. As examples, we find its value for A-optimal 2"-BFF
designs of resolution VII given by Shirakura [9] and [10], when 6<m
<9.

2. Measures of sensitivity

Consider a fractional experiment with m factors each at two levels
(0 and 1, say). Then the ordinary linear model associated with a frac-
tion T with N assemblies is

(2.1) Cly(T))=E.6, Var [y(T)]=dly, Rank (E;)=v,,

where E[y] stands for the expected value of y, y(T) is a vector of N
observations, E, is the Nxyv, design matrix, @ is a vector of unknown
effects up to the Il-factor interactions, ¢ is a constant which may or

may not be known, and vl=1+<1{”>+ .- +<7{"> Here 1<[m/2], where

[#] denotes the largest integer not exceeding x. The predicted value
of y(T) is y(T)=Ry(T), where R=E,(E}E;)'E} which is known as
the projection matrix. Here A’ denotes the transpose of a matrix A.
Suppose that the u-th observation in y(T) is an outlier in the sense
that an unknown aberration ¢, a fixed constant, is added to it. And
we denote the resulting observation vector as y*(T) and the correspond-
ing predicted value as j*(T)=Ry*(T). Then the quantity d,={j*(T)
—i(T)Y {*(T)—y(T)} is a measure of overall discrepancy caused by
the effect of ¢ on the u-th observation, and it is equal to ¢*r,,, where
7. is the u-th diagonal element of R. Clearly

N N
2.2) Sid,=¢ 3 ru=c'y,

because of the idempotency of R. If it is equally likely that ¢ occurs
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with any of N observations, giving rise to d,,---,dy, the average dis-
crepancy is d=¢* i Tw/N=cv,/N. If the d, (u=1,..., N) are as small
u=0

as possible, then a design is said to be insensitive with respect to out-
liers. Because 3.d, is fixed as in (2.2), this means that the d, are as
uniformly as possible for a design insensitive to outliers. As one con-
venient measure of uniformity, Box and Draper [1] introduced the
following :

V()= 5;‘1 (d.—d)|N=c'{r—(»)}/N}YN,
where
'r=é (ru)? -

Thus to ensure insensitivity to outliers, V (d) should be made small.
Minimization of V(d) is equivalent to minimization of », when N and
v, are both fixed. Recently, Ghosh and Kipngeno [8] have defined the
outlier-insensitivity factor, E, say, by

E=100X (v,)*/(Nr) ,

because r=(v,)’/N.
Note that under the model (2.1), for an orthogonal design or N=
y,, i.e., saturated design, we have E=100.

3. Outlier-insensitivity factors

Under the model (2.1), the expected value of an observation asso-
ciated with an assembly (ey,- -+, e,) With ¢,=0 or 1 is given by

(31) 8[1/(51, ) em)]= ql,;"” d'1(7]1)' * 'd’m(”m)a(ﬂb Y ﬂm) ’

where the summation is over all binary numbers (7, -, 7,) With 7,=0
or 1 such that 0<»+---+79.=l, and

(3.2) dy(0)=d,(0)=d,(1)=1 and dy(1)=—1.

Note that when »+---+%,=J5 (/=0,1,---,1), 0(n,) is called the j-
factor interaction, where %j=(»y,+ -, 7m)-

When T is a B-array of strength m, size N, m constraints, 2 levels
and index set {4y, 4;,--+, 4,}, T is called an S-array, written SA (m; 4,
A1+ vy Ay) for brevity (see [9]). For T being an SA (m; A, Ay, ) 2n),
T can be expressed as T=|j,, QT if 4,=1 (+=0, 1,---, m), where T,

are the (0, 1) matrices of size (?) Xm whose rows denote all distinct
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vectors with weight 7. Here j, and AQ B denote, respectively, the
pX1 vector with all unity and the Kronecker product of two matrices
A and B, and the weight of a (0, 1) vector means the number of ones
in the vector.

Let ET=“j11®E¢(j)” if 2121 (i=07 17' e, M j=0: 1’ M l)! where
E,(j) denote the submatrices of E, corresponding, respectively, to T;
and 6(n,). Then from (3.1), (8.2) and Appendix, we have

min (%, /,m—-1)
E‘ (j)z 2 (_l)f—mln (isj)+aA§i.f)
a=0

for +=0,1,---,m and 5=0,1,..-,1,

where min (a,,- -, a@,) denotes the minimum value of integers a,,---, a,,
and A¢” are the local association matrices which are given in Appen-
dix. Hence, it follows from Appendix that

min (%, /) (_1)J—mln(‘:f)+“A§f'” for Oé'bélmlzl y
(3-3) Ef (j)_—_ min (m—1, §)
P (—lymnein-egmid  for [mj2]<ism.
a=0

Thus, from (3.3) and Appendix, the following is immediate.
LEMMA 3.1. The submatrices E,(3) of E, can be expressed as

min (i, 7) h%"j)Az(i'j)
” for 0<ig[m/2] and 0=j<l,
-Et(j)='< nintmt, )
> h;k(m—i.j)A”(m—t.J)
\ " for [m[2]<ism and 0=<j<I,
where
-G
IS} (—ue(;258,) (" AT
if 0=iZjiZ[m/2],
h‘(si,.f)_—_- ) . e
()
x |2 (1) (" )
if 0=j5<i<[m/2],

and k™4 are given by replacing 1 in h$? by m—i.
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For T being an SA (m; Ay, 45, -+, 4,), the submatrices M, , of E7E,
corresponding, respectively, to {6(».)} and {6(x,)} can be expressed as

min (z,v)

Mu,v= 2 T(v—u|+2aA(au'v) fOI' 0§u,’l)§l,
a=0

where a connection between 7’s and A’s is given by

A& 1\ m—1
r=R 2 l)p(p><j—-i+p>]’
(see [15]). It follows from Appendix that M, , can be expressed as

min (4, v)
M,,= pz-E. KPP AR for 05w, v<l,

where

p+u
K5'= ) Yo-ur2aRt@t?  for O0Zusvsl—
# a=0 + 4

and k) *=x%" for u<v (see [16]). If E;E, is non-singular, then the
submatrices M, of (E}E;)™" corresponding, respectively, to {6(».)} and
{6(n.)} is

min (u,v)

(3.4) Mr="30 kb s, Ake®  for 0<u,vsl,
8=0

where ||kf,||=|x%°]"!. Note that the order of [«{.| is I+1—8 (=0,
1,---,1) and does not depend on m, while the order of E7E; is v,.
Thus from Lemma 3.1, (3.4) and Appendix, the following is immediate.

LEMMA 3.2. The diagonal submatrices R, of R corresponding to T,
can be expressed as
l 1
2 2]

{min (i,4,k)
=0 k=0

) Gk i,
R P RGO kg, - g Al }

if 0=i=[m/2],

“~,

8=0

PIRSEIE e mt, ) R (m—1,8) Ym—i,m—1)
m—1i, m—1, m—i,m—
{ DI k3 Kf—pe-s A }

=0

if [mf2]<i<m.

Since Ag“’:I(m for i=0,1,...,m, it follows from Appendix that
the coefficients of A{*® in A¥“" are given by

35) o=t [{(T)(5)("0 )} =#/(7)

where 2{4®, 2fz,, and ¢, are given in Appendix. Hence, from Lemma
3.2 and (3.5), the diagonal elements r,, of R, are given by
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I 1 (min(,4,k)
EE o ()
if 0=i=[m/2],

210 S N ”?—ﬁ.k-ﬂ} ]/(T)
if [m/2]<ism.

{mln (m—1,7,k)

B=0

Thus the following is immediate.
LEMMA 3.3. For T being an SA (m; Ay A3+, An), under the model
(2.1), r 18 given by

where r, are given by (3.6).

From Lemma 3.3, we have the main results of this paper as fol-
lows.

THEOREM 3.1. Let T be an SA (m; Ay Ay, An). Then under the
model (2.1), the outlier-insensitivity factor E is given by

E=100X(v,)*/(N7) ,

where r is given in Lemma 3.3.

4. Calculation of E for Shirakura's designs

In this section, we study the sensitivity of A-optimal 2"-BFF de-
signs of resolution VII (i.e., [=3) given by Shirakura [9] and [10]. It
follows from Lemma 3.1 that

B0 = {(T)} ” for 0<i<[m/2],
rev=—m-20{(T])fi}" for  1sisim,
hgt,n:z{('g":%)}l/z for 1=5ig[m/2],
R D = (1)~ R for j=2,3 and B=0,1,

o= (o §)—2m—vi (MH(m=2) ()"

for 251 [m/2],



ROBUSTNESS OF BALANCED FRACTIONAL 2m FACTORIAL DESIGNS 655

o= —2(m—20) (73 Ji-1} "

for 2<15[m)2],
A\ 12 .
h§“’=4{<7£‘_42t>} for 2=i<[m/2],
hgz,3)= _h§3,2) fOI‘ ,3=0, 1: 2 ’

7= (8 a5 () (70 4]

for

neo=18("5 1) —40m—9)i—n+2(™; 2

for

3<i<[m/2],

JH(E=3)/C27)

3<i<[m/2],

B9 = — d(m—24) {(?:g) /(i—z)} .
for 3=i<[m/2],

meo=s{(P " for

and h}™-%9 are given by replacing 7 in A{? by m—a1.
ing an SA (m; 2y, 45+ -+, A2,), We have

E=100X (v)*/(N7) ,

3<i<[m/2],

Thus for T be-

where

r=3 471y

i=0

and

BEE" s }]/(%)
if 0<i<[m/2],

[é é {mln(:gt,!,k) ¢ph:’k(m—t,j)h;<(m—t,k) "5—5,1:—#}]/(?)
if [m2]<ism.

Y=+

For 6<mx9, all A-optimal 2"-BFF designs of resolution VII given
by Shirakura [9] and [10] except for the designs corresponding to m=
8 and N=127b, 128b are S-arrays. In Tables 1, 2, 3 and 4, the values
of the outlier-insensitivity factor E of A-optimal 2"-BFF designs of re-
solution VII are presented for m=6 and 42<N<64, m=7 and 64<N=<
90, m=8 and 93<N<128, and m=9 and 130<N=<150, respectively.
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These values are greater than 93, 87, 92 and 91 for m=6, 7, 8 and
9, respectively. Therefore we conclude that the sensitivities of the
Shirakura’s designs to outliers are low.

Table 1. Table 2. Table 3. Table 4.

N E N E N E N E

42 100.00000 64 100.00000 93 100.00000 130 100.00000
43 99.81403 65a 99.23683 94 99.47096 131 99.61979
4 98.68351 65b  99.59870 95 99.05598 132 98.99250
45 97.42432 66 98.81355 96 98.19897 133 98.31154
46 95.70471 67a 97.59471 97 97.51840 134 97.96954
47 99.30583 67b  97.86155 98 96.61199 135 97.28181
48 99.28371 68 96.67693 99 95.83656 136 96.78959
48 98.83269 69a 95.40590 100 94.93192 137 96.10858
49 98.80295 69b  95.56592 101 96.21760 138 95.55457
50 97.79658 70 98.29494 102 95.81256 139 96.87867
50 97.70547 71a 97.54619 103 95.06137 140 96.57143
51 96.72022 71b 95.35560 104 94.23622 141 96.01454
52 95.31230 72a 97.25246 105 93.58704 142 95.40207
52 95.27303 72b  94.81481 106 92.75629 143 94.77291
53 93.92315 73a 96.33422 107 98.81635 144 94.13993
54 95.26166 73b  94.09180 108 98.50349 145 93.62473
55 95.05672 74a 95.54002 109 98.27383 146 93.00120
56 9422506 74b  93.06986 110 97.57208 147 92.46373
57 98.92164 75a 94.48201 111 97.05163 148 92.08806
58 99.10209 75b  92.16546 112 96.28676 149 91.84034
59 98.91176 76a 93.52295 113 95.65440 150 91.35135
60 98.30057 76b 91.07877 114 94.87960

61 97.22206 77 94.42167 115 96.66927

62 99.83649 78 93.82685 116 96.45581

63 99.89680 79 93.24751 117 96.00049

64 100.00000 80 92.47121 118 95.37221

81 91.66177 119 94.79438
82 90.74376 120 94.10029

83 89.85773 121 93.47427
84 88.90973 122 92.76839
85a  95.80994 123 95.96798
85b  90.07147 124 95.48760

86a  95.59750 125 95.07700
86b  89.86398 126 94.45884
87a  95.32026 127a  99.89345
87b  89.95140 128a  100.00000

88a  94.71190
88b  89.20927
89a 93.95288
89b  88.75775
90a 93.18285
90b  87.91516

5. Concluding remarks

Let T* be an SA(7; 3,0,0,1,1,0, 1, 3), which is also a B-array of
strength 6 and size 83. Then we have det (||«¥°||)=129466368, det (||x¥*||)
=73728, det (||x?||)=3072 and det (||«3°||)=128, where det(A4) denotes
the determinant of a matrix A. Hence, T* is a 2"-BFF design of re-
solution VII. It follows from Section 4 that £=96.91502 for T*, which
is the most insensitive design to outliers in the class of balanced de-
signs derived from S-arrays, while, from Table 2, we have E=89.85773



ROBUSTNESS OF BALANCED FRACTIONAL 2 FACTORIAL DESIGNS 657

for an A-optimal 2-BFF design T of resolution VII. On the other
hand, it follows from Theorem 2.1 of Shirakura [9] that

tr {(E}.E7)'}=1.50710 for T*
and
tr {(E} E,)}=0.88119 for T.

This implies that in the restricted class mentioned above, the most in-
sensitive design to outliers is not always good design in some sense.
It, however, is worth to calculate the values of E for some optimal
designs with respect to the popular criteria (e.g., A-, D- and E-optimal).
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Appendix
Let (ey,+ ¢+, e,) (=&}, say) be a (0,1) vector with weight 7. Fur-
ther let S,={e;} (¢=0,1,---, m). Then |S,|=<Z"> (=mn,, say), where |S]|

denotes the cardinality of a set S. Suppose a relation of association
defined among the sets S; in such a way that e (€S, and ¢, (¢S,
are the o-th associates if

(A.l) e/e;=min (¢, j)—a ,

where ¢=0, 1,- .-, min (¢, m—1, j, m—J). Let &=j,—e,. Then if e, is
the a-th associate of e,, then (A.1) shows that e, is the a*-th associate
of &, & is the a**-th associate of e,, and & is the a***-th associate
of §,, where a*=min (3, m— j)—i+min (¢, j)—e, a**=min (m—1, j)—j+
min (¢, j)—e, and e***=min (m—1, m—j)—m+i+j—min (¢, j)+a.

Let A®® (=A®*') be the n,xn, local association matrix of the
TMDPB association scheme, where 0<u<v<[m/2] and «=0,1,---,!
(e.g., [15]). Further let A% (=A%) (0<usv=s[m/2]; f=0,1,.---,1)
be the n,xn, matrices which are linearly linked with A®* as follows
(e.g., [11] and [16]).

(A.2) A@o= gzg’;’”)Af,(“"” for 0<asu=<v<[m/2]
and

(A.8) A;weg e  ASD  for 0<p=susv=[m/2],
where

= rnai] (el
(v—g+b>

#eo=3 (~1

and

zé’,;',,,)=¢ﬁzg;,v>/{<”3> ( ';) <v7—r—b;—ta>} for 0<u=<sv=[m/2].
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Here

¢,=<7g’) —<B"_r_‘1> for p=0,1,..., min (u, ).

The matrices A¥~® have the following properties,
S Ago=1L,
B=0
Al gron—g Ao
Rank (4¥*")=¢, ,

where 4,, denotes Kronecker’s delta, i.e., 3,,=1 or 0 according as
a=>b or not. As mentioned above, we have

A¢P if 0<1, j=[m/2],
e ALm) if 0=i=[m/2]<j=m,

AGD if 0=j=[m/2]<i=m,

A@simen if [m/2]<3, j<m.

Thus A%? (014, j<m; 0<a<min (¢, m—1, j, m—J)) can be expressed
as the linear combinations of A{** as in (A.2) and (A.3).

It is to be noted that the importance of the TMDPB association
algebra ({ generated by the ordered association matrices D™ and also
generated by Di{*» has been discussed in the works of Yamamoto,
Shirakura and Kuwada [16], and others. A few references are given
above ; for further information the readers are requested to see the
references therein.



