SOME PROPERTIES OF MULTIVARIATE EXTREME VALUE DISTRIBUTIONS AND MULTIVARIATE TAIL EQUIVALENCE

RINYA TAKAHASHI

(Received Dec. 13, 1985; revised June 13, 1986)

Summary

Denote by H a k-dimensional extreme value distribution with marginal distribution $H_i(x) = \Lambda(x) = \exp(-e^{-x})$, $x \in \mathbb{R}^1$. Then it is proved that $H(x) = \Lambda(x_1) \cdots \Lambda(x_k)$ for any $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$, if and only if the equation holds for $\mathbf{x} = (0, \dots, 0)$. Next some multivariate extensions of the results by Resnick (1971, J. Appl. Probab., 8, 136-156) on tail equivalence and asymptotic distributions of extremes are established.

1. Introduction

Multivariate extreme order statistics have been studied by many authors, and their results have been summarized by Galambos (see [3], Chapter 5). In this paper, we establish some properties of multivariate extreme value distributions, and by using the results of Marshall and Olkin [4] we extend some of the results given in Resnick [5] to the multivariate case. We may use the same notations as in Marshall and Olkin [4].

For $a, b, x \in \mathbb{R}^k$, write ax+b to denote the vector

$$(a_1x_1+b_1,\cdots,a_kx_k+b_k)$$
.

Basic arithmetical operations are always meant componentwise. Let $X^{(1)}, X^{(2)}, \cdots$ be a sequence of independent k-dimensional random vectors with common distribution function F and let

$$Z_j^{(n)} = \max_{1 \leq i \leq n} X_j^{(i)}$$
, $j = 1, \cdots, k$.

If there exist $a^{(n)} > 0$, $b^{(n)} \in \mathbb{R}^k$, $n=1, 2, \cdots$ $(a^{(n)} > 0$ means $a_j^{(n)} > 0$, $j=1, \ldots, k$) such that $(\mathbb{Z}^{(n)} - b^{(n)})/a^{(n)}$ converges in distribution to a random vector U with nondegenerate distribution function H (i.e., all univari-

Key words and phrases: Multivariate extreme value distribution, multivariate tail equivalence.

ate marginals of H are nondegenerate), then F is said to be in the domain of attraction of H with the notation $F \in D(H)$ and H is said to be a multivariate extreme value distribution. The convergence in distribution is equivalent to the condition

(1.1)
$$\lim F^{n}(a^{(n)}x+b^{(n)})=H(x)$$

for all x, because multivariate extreme value distributions are continuous (see Theorem 5.2.2 of Galambos [3]).

If $(\mathbf{Z}^{(n)}-\mathbf{b}^{(n)})/\mathbf{a}^{(n)}$ converges in distribution to U, then the j-th component of $(\mathbf{Z}^{(n)}-\mathbf{b}^{(n)})/\mathbf{a}^{(n)}$ converges to the j-th component of U and thus normalizing constants $\{a_j^{(n)}\}$, $\{b_j^{(n)}\}$ can be determined from well-known univariate considerations, $j=1,\dots,k$.

We make extensive use of the following result (see Marshall and Olkin [4] and Theorem 5.3.1 of Galambos [3]).

LEMMA 1.1. Equation (1.1) is equivalent to

(1.2)
$$\lim n \{1 - F(\boldsymbol{a}^{(n)} \boldsymbol{x} + \boldsymbol{b}^{(n)})\} = -\log H(\boldsymbol{x})$$

for all x such that 0 < H(x) < 1.

It is well-known that the univariate extreme value distributions can only be one of the following types

$$\Phi_{\alpha}(x) = \exp(-x^{-\alpha})$$
, $x > 0$ $(\alpha > 0)$, $\Psi_{\alpha}(x) = \exp(-(-x)^{\alpha})$, $x \le 0$ $(\alpha > 0)$, $A(x) = \exp(-e^{-x})$, $-\infty < x < \infty$.

For k=1, let

$$x^0 = x_F^0 = \sup\{x: F(x) < 1\} \le \infty$$
, $\bar{F}(x) = 1 - F(x)$,

and

$$ar{F}^{\scriptscriptstyle{-1}}(p)\!=\!F^{\scriptscriptstyle{-1}}(1\!-\!p)$$
 , $p\in(0,1)$,

where $F^{-1}(p) = \inf \{x : F(x) \ge p\}$ denotes the generalized inverse of F.

If k>1 and H is the joint distribution of (Y_1, \dots, Y_k) , then H_i and H_{ij} denote the marginal distributions of Y_i and (Y_i, Y_j) , respectively, where $i, j=1, 2, \dots, k$ and i < j. For a k-dimensional distribution F, let

$$\boldsymbol{x}_F^0 = (x_{F_1}^0, \cdots, x_{F_k}^0)$$
.

2. Multivariate extreme value distributions

In this section we establish some properties of multivariate extreme

value distributions.

THEOREM 2.1. Let H be a nondegenerate k-dimensional distribution function. Then a necessary and sufficient condition that H is an extreme value distribution is that for all s>0 there exist vectors $\mathbf{A}^{(s)}>0$ and $\mathbf{B}^{(s)}$ such that

$$(2.1) H^{s}(\mathbf{A}^{(s)}\mathbf{x} + \mathbf{B}^{(s)}) = H(\mathbf{x})$$

for all $x \in \mathbb{R}^k$.

PROOF. Sufficiency is obvious so that we shall prove necessity. If H is an extreme value distribution, then there exist a distribution function F and vectors $\mathbf{a}^{(n)}$ and $\mathbf{b}^{(n)}$ such that

(2.2)
$$\lim_{n\to\infty} F^n(a^{(n)}x+b^{(n)})=H(x).$$

It follows from Lemma 1.1 that

$$\lim_{n \to \infty} n \{1 - F(a^{(n)}x + b^{(n)})\} = -\log H(x).$$

Hence for all s>0

$$\lim_{n\to\infty} [ns] \{1 - F(a^{([ns])}x + b^{([ns])})\} = -\log H(x),$$

where [ns] is the greatest integer less than or equal to ns. Then by Lemma 1.1

(2.3)
$$\lim_{x \to \infty} F^{n}(a^{([ns])}x + b^{([ns])}) = H^{1/s}(x).$$

Hence by (2.2), (2.3) and Lemma 2.2.3 of Galambos [3] (which can easily be extended to the multivariate case, see also proof of Theorem 5.2.1 of Galambos [3]), there exist vectors $A^{(s)} > 0$ and $B^{(s)}$ such that

$$H^{\epsilon}(A^{(\epsilon)}x+B^{(\epsilon)})=H(x)$$

for all $x \in \mathbb{R}^k$.

COROLLARY 2.1. Let H be an extreme value distribution. Then for any t>0, H^t is an extreme value distribution.

COROLLARY 2.2. Let H be an extreme value distribution. Then for all s>0, there exist vectors $\mathbf{A}^{(s)}>\mathbf{0}$ and $\mathbf{B}^{(s)}$ such that (2.1) holds, and if

- (i) $H_i = \Phi_{\alpha_i}$, $i = 1, \dots, k$, then $A^{(s)} = (s^{1/\alpha_1}, \dots, s^{1/\alpha_k})$ and $B^{(s)} = 0$;
- (ii) $H_i = \mathcal{I}_{\alpha_i}$, $i = 1, \dots, k$, then $A^{(s)} = (s^{-1/\alpha_1}, \dots, s^{-1/\alpha_k})$ and $B^{(s)} = 0$;
- (iii) $H_i = 1, i = 1, \dots, k$, then $A^{(s)} = 1 = (1, \dots, 1)$ and $B^{(s)} = (\log s, \dots, \log s)$, where $a_i > 0, i = 1, \dots, k$.

Example. (See Galambos [3], p. 254.) The distribution function

$$H(x_1, x_2, \dots, x_k) = \exp \{-\exp [-\min (x_1, x_2, \dots, x_k)]\}$$

is an extreme value distribution (with $H_i = \Lambda$, $i = 1, \dots, k$), since for any s > 0

$$H^{s}(x_{1}+\log s, x_{2}+\log s, \cdots, x_{k}+\log s)=H(x_{1}, x_{2}, \cdots, x_{k})$$
.

On the other hand, the distribution function

$$H(x_1, x_2) = \Lambda(x_1)\Lambda(x_2)[1 + (1 - \Lambda(x_1))(1 - \Lambda(x_2))/2]$$

is not an extreme value distribution, since

$$H^{s}(x_{1}+\log s, x_{2}+\log s) = \Lambda(x_{1})\Lambda(x_{2})[1+(1-\Lambda^{1/s}(x_{1}))(1-\Lambda^{1/s}(x_{2}))/2]^{s} \neq H(x_{1}, x_{2}).$$

COROLLARY 2.3. (Lemma 5.4.1 of Galambos [3]) Let H be an extreme value distribution and denote by $D_H(\mathbf{y}) = H(H_1^{-1}(y_1), \dots, H_k^{-1}(y_k)),$ $\mathbf{y} \in (0, 1)^k$, its dependence function. Then, D_H satisfies for all s > 0

$$D_H^s(y^{1/s}) = D_H(y)$$
.

LEMMA 2.1. Let H be an extreme value distribution and D_H be the dependence function of H. If there exists a real number $c \in (0, 1)$ such that

$$(2.4) D_{H}(\mathbf{y}) = y_1 y_2 \cdots y_k for all \mathbf{y} \in (c, 1)^k,$$

then

$$D_H(\mathbf{y}) = y_1 y_2 \cdots y_k$$
 for all $\mathbf{y} \in (0, 1)^k$.

PROOF. For any $y \in (0, 1)^k$, there exists an s>0 such that $y^{1/s} \in (c, 1)^k$. Hence by Corollary 2.3 and (2.4)

$$D_H(\mathbf{y}) = (D_H(\mathbf{y}^{1/s}))^s = (y_1^{1/s}y_2^{1/s}\cdots y_k^{1/s})^s = y_1y_2\cdots y_k$$

for all $y \in (0, 1)^k$.

We now prove the following result which is concerned with the asymptotic independence of maxima.

THEOREM 2.2. Let H be an extreme value distribution such that $H_i = \Lambda$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$(2.5) H(x) = \Lambda(x_1) \cdots \Lambda(x_k)$$

for any $\mathbf{x} = (x_1, \dots, x_k) \in \mathbf{R}^k$ is that

(2.6)
$$H(0, \dots, 0) = \Lambda(0)^k$$
.

PROOF. Necessity is obvious so that we shall prove sufficiency. Since H is an extreme value distribution, there exist a distribution function $F(x_1, \dots, x_k) = P(X_1 \le x_1, \dots, X_k \le x_k)$ and vectors $\boldsymbol{a}^{(n)}$ and $\boldsymbol{b}^{(n)}$ such that

$$\lim_{n\to\infty} F^n(a^{(n)}x+b^{(n)})=H(x).$$

It is well-known that the weak convergence of probability measures implies the weak convergence of any finite-dimensional marginal distribution (see Billingsley [1], p. 30). Thus by Lemma 1.1 we have

(2.7)
$$\lim n \left(1 - F_{ij}(b_i^{(n)}, b_j^{(n)})\right) = -\log H_{ij}(0, 0)$$

for any i < j. By Theorem 5.4.1 of Galambos [3] we have

$$1 \le -\log H_{ij}(0,0) \le 2$$
.

Now we shall prove that

$$(2.8) -\log H_{cl}(0,0) = 2$$

for any i < j. Indeed, if (2.8) does not hold i.e. if for example for i=k-1, j=k

$$-\log H_{r-1,r}(0,0)=c$$
, $1 \le c < 2$,

then we have

$$\begin{split} n \left(1 - F(b^{(n)}) \right) & \leq n \left\{ \sum_{i=1}^{k-2} \left(1 - F_i(b_i^{(n)}) \right) + \left(1 - F_{k-1,k}(b_{k-1}^{(n)}, b_k^{(n)}) \right) \right\} \\ & \to (k-2) + c < k \quad \text{as} \quad n \to \infty \end{split},$$

using the relation $\lim_{n\to\infty} n(1-F_i(b_i^{(n)}))=1$. This contradicts (2.6), thus we have (2.8). Let $\bar{F}_{i,i}(x_i,x_i)=P(X_i>x_i,X_i>x_i)$, then

$$\bar{F}_{ij}(x_i, x_j) = (1 - F_i(x_i)) + (1 - F_j(x_j)) - (1 - F_{ij}(x_i, x_j))$$
.

Therefore, by (2.7) and (2.8) we have

$$\lim_{n\to\infty} n\bar{F}_{ij}(b_i^{(n)},b_j^{(n)})=0$$

for any i < j. From the definition of \bar{F}_{ij} and the inequalities $a_i^{(n)}, a_j^{(n)} > 0$ we get

$$\bar{F}_{ij}(b_i^{(n)}, b_j^{(n)}) \ge \bar{F}_{ij}(a_i^{(n)}x_i + b_i^{(n)}, a_j^{(n)}x_j + b_j^{(n)})$$

for any $x_i, x_j \ge 0$, thus we have

$$\lim_{n\to\infty} n\bar{F}_{i,j}(a_i^{(n)}x_i+b_i^{(n)},a_j^{(n)}x_j+b_j^{(n)})=0.$$

So by Theorem 5.3.1 of Galambos [3] we have

$$H(x_1, \dots, x_k) = \Lambda(x_1) \dots \Lambda(x_k)$$

for any $x_i \ge 0$, $i=1,\dots,k$. Therefore, by Lemma 2.1, (2.5) holds for any $x \in \mathbb{R}^k$.

In a similar way one proves the following theorems.

THEOREM 2.3. Let H be an extreme value distribution such that $H_i = \Phi_{\alpha_i}$, $\alpha_i > 0$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$H(\mathbf{x}) = \Phi_{\alpha_1}(x_1) \cdots \Phi_{\alpha_k}(x_k)$$

for any $x \in \mathbb{R}^k$ is that

$$H(1) = \Phi_{\alpha_1}(1) \cdots \Phi_{\alpha_n}(1)$$
.

THEOREM 2.4. Let H be an extreme value distribution such that $H_i = \Psi_{\alpha_i}$, $\alpha_i > 0$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$H(\mathbf{x}) = \Psi_{\alpha_1}(x_1) \cdots \Psi_{\alpha_k}(x_k)$$

for any $x \in \mathbb{R}^k$ is that

$$H(-1)=\Psi_{\alpha_1}(-1)\cdots\Psi_{\alpha_k}(-1).$$

3. Multivariate tail equivalence

In this section, by using the results of Marshall and Olkin [4] we extend some of the results given in Resnick [5] to the multivariate case.

The following theorem is a k-dimensional version of Lemma 2.1 of Resnick [5].

THEOREM 3.1. Let F and G be k-dimensional distribution functions. Suppose for normalizing vectors $\mathbf{a}^{(n)} > \mathbf{0}$, $\mathbf{b}^{(n)}$, $n \ge 1$, $F^n(\mathbf{a}^{(n)}\mathbf{x} + \mathbf{b}^{(n)}) \to H(\mathbf{x})$, where $H_i = \Phi_{a_i}$, $a_i > 0$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

(3.1)
$$G^{n}(\boldsymbol{a}^{(n)}\boldsymbol{x}+\boldsymbol{b}^{(n)}) \rightarrow H(\boldsymbol{A}\boldsymbol{x}+\boldsymbol{B}),$$

where $A = (c^{1/\alpha_1}, \dots, c^{1/\alpha_k}), c > 0$, is that B = 0 and

(3.2)
$$\lim_{t \to \infty} \frac{1 - F(tx_1, \phi_2(t)x_2, \dots, \phi_k(t)x_k)}{1 - G(tx_1, \phi_2(t)x_2, \dots, \phi_k(t)x_k)} = c$$

for all $\mathbf{x} = (x_1, x_2, \dots, x_k)$ such that $0 < H(\mathbf{x}) < 1$, where $\phi_i(t) = \overline{F}_i^{-1} \overline{F}_1(t)$, $i = 2, \dots, k$.

PROOF. If $F \in D(H)$, then it is known that we can take $b^{(n)} = 0$. $a_i^{(n)} = \bar{F}_i^{-1}(1/n)$ and $a_i^{(n)} = \bar{F}_i^{-1}\bar{F}_i(a_i^{(n)}) = \phi_i(a_i^{(n)}), i = 2, \dots, k, n \ge 1$ (see the proof of Proposition 3.1 of Marshall and Olkin [4] and Appendix I).

Sufficiency. Since $a_1^{(n)} \to \infty$ as $n \to \infty$ and (3.2), we have that for all x such that 0 < H(x) < 1.

$$c = \lim_{n \to \infty} \frac{1 - F(a_1^{(n)} x_1, \phi_2(a_1^{(n)}) x_2, \cdots, \phi_k(a_1^{(n)}) x_k)}{1 - G(a_1^{(n)} x_1, \phi_2(a_1^{(n)}) x_2, \cdots, \phi_k(a_1^{(n)}) x_k)} = \lim_{n \to \infty} \frac{n(1 - F(\boldsymbol{a}^{(n)} \boldsymbol{x}))}{n(1 - G(\boldsymbol{a}^{(n)} \boldsymbol{x}))}.$$

Then by Lemma 1.1 and Corollary 2.2 we have

$$G^{n}(\mathbf{a}^{(n)}\mathbf{x}) \rightarrow H^{1/c}(\mathbf{x}) = H(c^{1/a_1}x_1, \dots, c^{1/a_k}x_n) = H(\mathbf{A}\mathbf{x})$$

Necessity. From the univariate result (Lemma 2.1 of Resnick [5]). we see that $B_i=0$, $i=1,\dots,k$. So we have B=0. Since $a_i^{(n)} \le a_i^{(n+1)} \to a_i^{(n)}$ ∞ , for any sufficiently large t there exists an $n \in N$ such that $\alpha_i^{(n)} \le t \le \infty$ $a_1^{(n+1)}$. For any $x=(x_1,\dots,x_k)$ such that 0 < H(x) < 1, we have $0 < x \neq \infty$. Moreover, ϕ_i is non-decreasing, $i=2,\dots,k$. Therefore we have

$$\frac{1 - F(\boldsymbol{a}^{(n+1)}\boldsymbol{x})}{1 - G(\boldsymbol{a}^{(n)}\boldsymbol{x})} \leq \frac{1 - F(tx_1, \phi_2(t)x_2, \cdots, \phi_k(t)x_k)}{1 - G(tx_1, \phi_2(t)x_2, \cdots, \phi_k(t)x_k)} \leq \frac{1 - F(\boldsymbol{a}^{(n)}\boldsymbol{x})}{1 - G(\boldsymbol{a}^{(n+1)}\boldsymbol{x})}$$

for all x such that 0 < H(x) < 1. Taking the limits of above inequalities, we have (3.2).

If we consider the particular case $F_1 = \cdots = F_k$, then we have the following handy result.

COROLLARY 3.1. Let F and G be k-dimensional distribution func-Suppose $F_1 = \cdots = F_k$ and that there exist $a^{(n)} > 0$, $b^{(n)}$, $n \ge 1$ such that $F^n(a^{(n)}x+b^{(n)}1) \rightarrow H(x)$, where $H_i = \Phi_a$, $\alpha > 0$, $i=1,\dots,k$. Then a necessary and sufficient condition that

$$G^{n}(a^{(n)}x+b^{(n)}1) \to H(Ax+B)$$
,

where $A=c^{1/\alpha}1$, c>0, is that B=0 and

$$\lim_{t\to\infty}\frac{1-F(tx)}{1-G(tx)}=c$$

for all x such that 0 < H(x) < 1.

Next we establish a k-dimensional version of Lemma 2.2 of Resnick [5], which can be proved similarly to Theorem 3.1.

THEOREM 3.2. Let F and G be k-dimensional distribution functions and $a^{(n)} > 0$, $b^{(n)}$, $n \ge 1$ are normalizing vectors such that $F^n(a^{(n)}x + b^{(n)})$ $\rightarrow H(\mathbf{x})$, where $H_i = \Psi_{\alpha_i}$, $\alpha_i > 0$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$G^n(\boldsymbol{a}^{(n)}\boldsymbol{x}+\boldsymbol{b}^{(n)}) \rightarrow H(\boldsymbol{A}\boldsymbol{x}+\boldsymbol{B})$$
,

where $A = (c^{-1/\alpha_1}, \dots, c^{-1/\alpha_k}), c > 0$, is that $B = 0, x_F^0 = x_G^0 = x^0 \in \mathbb{R}^k$ and

$$\lim_{t\downarrow 0} \frac{1 - F((tx_1, \phi_2(t)x_2, \cdots, \phi_k(t)x_k) + \mathbf{x}^0)}{1 - G((tx_1, \phi_2(t)x_2, \cdots, \phi_k(t)x_k) + \mathbf{x}^0)} = c$$

for all $\mathbf{x} = (x_1, \dots, x_k)$ such that $0 < H(\mathbf{x}) < 1$, where $x_i^0 = x_{F_i}^0$, $i = 1, \dots, k$ and $\phi_i(t) = x_i^0 - \bar{F}_i^{-1}(\bar{F}_1(x_1^0 - t))$, $i = 2, \dots, k$.

COROLLARY 3.2. Let F and G be k-dimensional distribution functions. Suppose $F_1 = \cdots = F_k$ and that there exist $a^{(n)} > 0$, $b^{(n)}$, $n \ge 1$ such that $F^n(a^{(n)}x + b^{(n)}1) \rightarrow H(x)$, where $H_i = \mathcal{T}_a$, a > 0, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$G^n(a^{(n)}x+b^{(n)}1) \rightarrow H(Ax+B)$$
,

where $A=c^{-1/\alpha}1$, c>0, is that B=0, $x_{F_i}^0=x_{G_i}^0=x^0\in R^1$, $i=1,\cdots,k$, and

$$\lim_{t \downarrow 0} \frac{1 - F(tx + x^0 1)}{1 - G(tx + x^0 1)} = c$$

for all x such that 0 < H(x) < 1.

Finally, we establish a k-dimensional version of Lemma 2.5 of Resnick [5].

THEOREM 3.3. Let F and G be k-dimensional distribution functions, and $\mathbf{a}^{(n)} > 0$, $\mathbf{b}^{(n)}$, $n \ge 1$ are normalizing vectors such that $F^n(\mathbf{a}^{(n)}\mathbf{x} + \mathbf{b}^{(n)}) \to H(\mathbf{x})$, where $H_i = \Lambda$, $i = 1, \dots, k$. Then a necessary and sufficient condition that

$$(3.3) Gn(\mathbf{a}^{(n)}\mathbf{x} + \mathbf{b}^{(n)}) \rightarrow H(\mathbf{A}\mathbf{x} + \mathbf{B}),$$

where A>0, B=b1, is that A=1, $x_F^0=x_G^0=x^0$ and

(3.4)
$$\lim_{t \uparrow x_1^0} \frac{1 - F(\boldsymbol{a}(t)\boldsymbol{x} + \boldsymbol{b}(t))}{1 - G(\boldsymbol{a}(t)\boldsymbol{x} + \boldsymbol{b}(t))} = e^b$$

for all x such that 0 < H(x) < 1, where $x_1^0 = x_{F_1}^0$, $a_i(t) = \bar{F}_i^{-1}(\bar{F}_1(t)/e) - \bar{F}_i^{-1}\bar{F}_1(t)$ and $b_i(t) = \bar{F}_i^{-1}\bar{F}_1(t)$, $i = 1, \dots, k$.

PROOF. If $F \in D(H)$, then we can suppose without loss of generality that $b_i^{(n)} = \bar{F}_i^{-1} \bar{F}_1(b_i^{(n)})$ and $a_i^{(n)} = \bar{F}_i^{-1} (\bar{F}_1(b_i^{(n)})/e) - \bar{F}_i^{-1} \bar{F}_1(b_i^{(n)})$, $i=1,\dots,k$. (See Proposition 3.3 of Marshall and Olkin [4] and Appendix II.)

Sufficiency. Since $\lim_{n\to\infty} b_1^{(n)} = x_1^0$ and $\{b_1^{(n)}\}$ is an increasing sequence,

by (3.4) we have

$$e^{b} = \lim_{n \to \infty} \frac{1 - F(\boldsymbol{a}(b_{1}^{(n)})\boldsymbol{x} + \boldsymbol{b}(b_{1}^{(n)}))}{1 - G(\boldsymbol{a}(b_{1}^{(n)})\boldsymbol{x} + \boldsymbol{b}(b_{1}^{(n)}))} = \lim_{n \to \infty} \frac{n\{1 - F(\boldsymbol{a}^{(n)}\boldsymbol{x} + \boldsymbol{b}^{(n)})\}}{n\{1 - G(\boldsymbol{a}^{(n)}\boldsymbol{x} + \boldsymbol{b}^{(n)})\}}.$$

Hence from Lemma 1.1 and Corollary 2.2 we have

$$G^n(\boldsymbol{a}^{(n)}\boldsymbol{x}+\boldsymbol{b}^{(n)}) \rightarrow H^{1/e^b}(\boldsymbol{x}) = H(\boldsymbol{x}+\boldsymbol{B})$$
, where $\boldsymbol{B}=b\boldsymbol{1}$.

Necessity. Consider the marginal distributions F_i , G_i and $H_i = 1$, $i = 1, \dots, k$, then by Lemma 2.5 of Resnick [5], we have A = 1 and $x_F^0 = x_G^0 = x^0$. Proposition 3.3 of Marshall and Olkin [4] implies

(3.5)
$$\lim_{t \uparrow x^0} \frac{1 - F(a(t)x + b(t))}{1 - F_1(t)} = -\log H(x)$$

for all x such that 0 < H(x) < 1. Now we shall prove that for all x such that 0 < H(x) < 1

(3.6)
$$\lim_{t \uparrow x_1^0} \frac{1 - G(a(t)x + b(t))}{1 - F_1(t)} = -e^{-b} \log H(x).$$

From (3.3) and A=1, we have $G^n(a^{(n)}x+b^{(n)}) \rightarrow H^{e^{-b}}(x)$. So it holds

$$\lim_{\alpha \to 0} s \{1 - G(\alpha(s)x + \beta(s))\} = -e^{-b} \log H(x) ,$$

where $\alpha_i(s) = \overline{F}_i^{-1}(1/(es)) - \overline{F}_i^{-1}(1/s)$ and $\beta_i(s) = \overline{F}_i^{-1}(1/s)$, $i = 1, \dots, k$. (This result can be proved similarly to Corollary 2.4.1 of de Haan [2].) Now, let $s(t) = 1/(1 - F_1(t))$, then $\alpha(s(t)) = \alpha(t)$ and $\beta(s(t)) = b(t)$, thus we have (3.6). The relations (3.5) and (3.6) imply (3.4).

COROLLARY 3.3. Let F and G be k-dimensional distribution functions. Suppose $F_1 = \cdots = F_k$ and that there exist $a^{(n)} > 0$, $b^{(n)}$, $n \ge 1$ such that $F^n(a^{(n)}x+b^{(n)}1) \to H(x)$, where $H_i = \Lambda$, $i=1,\cdots,k$. Then a necessary and sufficient condition that

$$G^{n}(a^{(n)}x+b^{(n)}1) \to H(Ax+B)$$
.

where A>0, B=b1, is that A=1, $x_{F_i}^0=x_{G_i}^0=x^0$, $i=1,\dots,k$ and

$$\lim_{t \uparrow x^0} \frac{1 - F(a(t)x + t1)}{1 - G(a(t)x + t1)} = e^b$$

for all **x** such that 0 < H(x) < 1, where $a(t) = \bar{F}_1^{-1}(\bar{F}_1(t)/e) - t$.

Finally, we remark that in general univariate tail equivalence does not imply multivariate tail equivalence of the joint distribution functions. Put, for example, $F(x_1, x_2) = H(x_1)H(x_2)$ and $G(x_1, x_2) = H(\min(x_1, x_2))$, where H is a univariate extreme value distribution. This counter-

example shows in addition that k-dimensional versions of Corollaries 2.1 and 2.2 of Resnick [5] do not necessarily hold.

Acknowledgements

I wish to express my gratitude to Professor J. Galambos of Temple University for suggesting this problem and remarks, and to Professor M. Okamoto of Otemon University for valuable advice.

I am also grateful to a referee for a number of helpful and constructive comments.

KOBE UNIVERSITY OF MERCANTILE MARINE

REFERENCES

- [1] Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.
- [2] de Haan, L. (1970). On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tracts, Vol. 32, Amsterdam.
- [3] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics, Wiley, New York.
- [4] Marshall, A. W. and Olkin, I. (1983). Domains of attraction of multivariate extreme value distributions, Ann. Probab., 11, 168-177.
- [5] Resnick, S. I. (1971). Tail equivalence and its applications, J. Appl. Probab., 8, 136-156.

Appendix I

By Lemma 2.2.3 of Galambos [3] it is sufficient to prove

(A.1)
$$\lim_{n\to\infty}\frac{\bar{F}_i^{-1}(1/n)}{\bar{F}_i^{-1}(\bar{F}_1(a_1^{(n)}))}=1\;,\qquad i=2,\cdots,\,k\;.$$

The relation

$$\lim_{n\to\infty}\frac{n}{1/\bar{F}_{1}(a_{1}^{(n)})}=\lim_{n\to\infty}n\left(1-F_{1}(a_{1}^{(n)})\right)=1$$

holds. Hence by Theorem 2.3.1 and Corollary 1.2.1 of de Haan [2] we have (A.1).

Appendix II

It is sufficient to prove

$$(A.2) F_i^n(a_i^{(n)}x+b_i^{(n)}) \rightarrow \Lambda(x) ,$$

where
$$a_i^{(n)} = \vec{F}_i^{-1}(\vec{F}_1(b_i^{(n)})/e) - \vec{F}_i^{-1}\vec{F}_1(b_i^{(n)})$$
 and $b_i^{(n)} = \vec{F}_i^{-1}\vec{F}_1(b_i^{(n)}), i=2,\cdots,k$.

Since the relation $\lim_{n\to\infty} n \bar{F}_1(b_1^{(n)}) = 1$ holds, we obtain

$$\lim_{n \to \infty} (1 - \bar{F}_1(b_1^{(n)}))^n = e^{-1}$$
, $\lim_{n \to \infty} (1 - \bar{F}_1(b_1^{(n)})/e)^n = e^{-e^{-1}}$.

Hence by Theorem 2.1.2* of de Haan [2] we have (A.2).