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Summary

Denote by H a k-dimensional extreme value distribution with mar-
ginal distribution H,(x)=A(x)=exp(—e*), z € R'. Then it is proved
that H(x)=A(x,)---A(x,) for any x=(z,,---, 2,) € R*, if and only if the
equation holds for x=(0,---,0). Next some multivariate extensions of
the results by Resnick (1971, J. Appl. Probab., 8, 136-156) on tail equiv-
alence and asymptotic distributions of extremes are established.

1. Introduction

Multivariate extreme order statistics have been studied by many
authors, and their results have been summarized by Galambos (see [3],
Chapter 5). In this paper, we establish some properties of multivariate
extreme value distributions, and by using the results of Marshall and
Olkin [4] we extend some of the results given in Resnick [5] to the
multivariate case. We may use the same notations as in Marshall and
Olkin [4].

For a, b, x ¢ R*, write ax+b to denote the vector

(@121+byy - <+, a2, +by) -

Basic arithmetical operations are always meant componentwise. Let

X® X%, ... be a sequence of independent k-dimensional random vec-
tors with common distribution function F' and let
Z§{™=max X, ji=1,.--, k.

13isn
If there exist a™>0, b € R*, n=1,2,--- (a™>0 means a{®>0, j=1,
-«+, k) such that (Z®—b™)/a™ converges in distribution to a random
vector U with nondegenerate distribution function H (i.e., all univari-

Key words and phrases: Multivariate extreme value distribution, multivariate tail equiv-
alence.
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ate marginals of H are nondegenerate), then F is said to be in the
domain of attraction of H with the notation Fe D(H) and H is said
to be a multivariate extreme value distribution. The convergence in
distribution is equivalent to the condition

1.1) lim F*(a™x+b"™)=H(x)

Nn—00

for all x, because multivariate extreme value distributions are continu-
ous (see Theorem 5.2.2 of Galambos [3]).

If (Z™—b")/a™ converges in distribution to U, then the j-th com-
ponent of (Z™—b™)/a‘™ converges to the j-th component of U and thus
normalizing constants {a{”}, {6’} can be determined from well-known
univariate considerations, j=1,-.-, k.

We make extensive use of the following result (see Marshall and
Olkin [4] and Theorem 5.3.1 of Galambos [3]).

LEMMA 1.1. Equation (1.1) s equivalent to
1.2) lim » {1—F(a™ x+b™)}= —log H(x)

n—00

Jor all x such that 0<H(x)<1.

It is well-known that the univariate extreme value distributions
can only be one of the following types

?,(x)=exp(—27%), >0 (@>0),
7, (x)=exp (—(—2x)%), 220 (¢>0),
A(x)=exp (—e™) , —ooLgloo,

For k=1, let

e*=x%=sup {x: F(x)<1}Lo, F@)=1-F(),
and

Fip)=F"'(1-p), »e(0,1),

where F~!(p)=inf {x: F(x)=p} denotes the generalized inverse of F.
If k>1 and H is the joint distribution of (Y},---,Y,), then H, and

H,; denote the marginal distributions of Y, and (Y, Y,), respectively,

where %, 5=1,2,---,k and ©<j. For a k-dimensional distribution F, let

x‘;‘=(x271" * xg"k) .

2. Multivariate extreme value distributions

In this section we establish some properties of multivariate extreme
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value distributions.

THEOREM 2.1. Let H be a nondegenerate k-dimensional distribution
Sunction. Then a mecessary and sufficient condition that H is an ex-
treme value distribution is that for all s>0 there exist vectors A®>0
and B® such that

2.1) H'(A®x+ B®)=H(x)
for all x ¢ R,

Proor. Sufficiency is obvious so that we shall prove necessity. If
H is an extreme value distribution, then there exist a distribution
function F' and vectors a® and d“” such that
(2.2) lim F*(@™x+b™)=H(x) .

n—oo

It follows from Lemma 1.1 that
}ll_gx n{l—F(a™x+b™)}=—log H(x) .
Hence for all s>0
}'1_{2 [n8]{1— F(a™Px+b™D)}= —log H(x) ,

where [ns] is the greatest integer less than or equal to ms. Then by
Lemma 1.1
(2.3) lim F"* (@™ x+4-b"P)=H"*(x) .

Hence by (2.2), (2.3) and Lemma 2.2.3 of Galambos [3] (which can easily
be extended to the multivariate case, see also proof of Theorem 5.2.1
of Galambos [3]), there exist vectors A®>0 and B* such that

H*'(A®x+ B®)=H(x)
for all x € R*.

COROLLARY 2.1. Let H be an extreme value distribution. Then for
any t>0, H' is an extreme value distribution.

COROLLARY 2.2. Let H be an extreme value distribution. Then for
all >0, there exist vectors A°>0 and B such that (2.1) holds, and if
(i) H=90,, 1=1,---, k, then AC=(s",-.., s"%*) and B®=0;

(ii) H,=%,, 1=1,---, k, then A=(s",..., 87%) and B’=0;
(iii) H,=4, 1=1,.--,k, then A®=1=(1,---,1) and B®=(logs,- - -,log 8),
where a,>0, i=1,---, k.

Example. (See Galambos [3], p. 254.) The distribution function



640 RINYA TAKAHASHI

H(xy, 25, -+, x,)=exp {—exp [—min (x,, 5, - -, 2)]}

is an extreme value distribution (with H,=4, 1=1,..., k), since for any
8>0

H*(x,+1og 8, x,+log s, - -, x,+1og 8)=H(x,, X3y« +, %) -
On the other hand, the distribution function
H(y, @)= A(x,) A(2,) [1+ (1 — A(x,)) (1 — A(x))/2]
is not an extreme value distribution, since

H*(x,+log 8, 2;,+1og 3)
= A(x,) A(2o) [1+ (1 — 4" (2,)) (1 — 4 (2,)) [2) + H(z,, %)

COROLLARY 2.3. (Lemma 5.4.1 of Galambos [3]) Let H be an ex-
treme value distribution and denote by Dy(y)=H(H,(¥),: -+, Hi'(Yx)),
Yy € (0, 1)*, its dependence function. Then, Dy satisfies for all s>0

Dy(y*)=Dx(y) -

LEMMA 2.1. Let H be an extreme value distribution and Dy be the
dependence function of H. If there exists a real mumber c € (0,1) such
that

(2.4) Da(y)=%19:" Y SJor all ye( 1),
then
De)=v%: -y Sfor all ye(0,1)*.

PrOOF. For any ye (0, 1)*, there exists an 8>0 such that y'” e
(¢, 1)*. Hence by Corollary 2.3 and (2.4)

Dx(y)=(Da")) ="y - - ¥") =¥ - Ui
for all y € (0, 1)~

We now prove the following result which is concerned with the
asymptotic independence of maxima.

THEOREM 2.2. Let H be an extreme value distribution such that
H,=4, 1=1,---, k. Then a mecessary and suffictent condition that

(2.5) H(x)=A(x,)- - - A(y)
for any x=(x,---, x,) € R* is that
(2.6) H(0,---,0)=4(0)%.
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PROOF. Necessity is obvious so that we shall prove sufficiency.
Since H is an extreme value distribution, there exist a distribution
function F(zy,---,z,)=P(X,=x,,---, X;<x,) and vectors a® and b™
such that

lim F*(a®x+b™)=H(x) .

It is well-known that the weak convergence of probability measures
implies the weak convergence of any finite-dimensional marginal distri-
bution (see Billingsley [1], p. 80). Thus by Lemma 1.1 we have

(2.7 lim n (1—F,, (b, b5”))= —log Hy(0, 0)

for any ¢<j. By Theorem 5.4.1 of Galambos [3] we have
1< —log H,(0,0)<2.

Now we shall prove that

(2.8) —log H,,(0, 0)=2

for any i<j. Indeed, if (2.8) does not hold i.e. if for example for
1=k—-1, j=k

—log H,,,(0,0)=¢c, 1se<2,

then we have

n (1= FO)Sn{S] 1—For)+1—Fuan @ )

—(k—2)+c<k as n—oo,

using the relation lim n (1— F;(bf?))=1. This contradicts (2.6), thus we
have (2.8). Let F,,(z,, #,)=P(X,>%, X,>%,), then

Fy(x 2)=(1—Fi(2))+(1— Fy(z,)— (1 —Fyy (2, 2,)) -
Therefore, by (2.7) and (2.8) we have

lim n, (56, b”) =0

for any ©1<j. From the definition of F‘,, and the inequalities a{, a§®
>0 we get

Fy (b7, b)) 2 Fy (a2, + b, afPz,+b5)
for any «,, 2,20, thus we have
lim nF,, (a2, +b, aPx,+b5)=0 .

So by Theorem 5.3.1 of Galambos [3] we have



642 RINYA TAKAHASHI

H(zy,- -, )= A(zy) - - A(2)

for any «,=0, t=1,..-, k. Therefore, by Lemma 2.1, (2.5) holds for
any x € R*.

In a similar way one proves the following theorems.

THEOREM 2.3. Let H be an extreme value distribution such that
Hi=0,, ,>0, 1=1,---,k. Then a necessary and sufficient condition
that

H(x)=0, (%) - -0, (x.)
for any x € R* is that
H1)=0,,(1)--0,,(1) .

THEOREM 2.4. Let H be an extreme value distribution such that
H=7,, >0, i=1,---,k. Then a mecessary and sufficient condition
that

H(x)=7, (%)) -7, (2)
Sor any x ¢ R* is that
H(-1)=,(-1)-- T, (-1 .

3. Multivariate tail equivalence

In this section, by using the results of Marshall and Olkin [4] we
extend some of the results given in Resnick [5] to the multivariate
case.

The following theorem is a k-dimensional version of Lemma 2.1 of
Resnick [5].

THEOREM 3.1. Let F and G be k-dimensional distribution functions.
Suppose for normalizing vectors a® >0, b, n=1, F*(a™®x+b"™)— H(x),
where H=0,, ,>0, i=1,---,k. Then a mnecessary and sufficient con-
dition that

(3.1) G"(a("’x+b‘"’)—>H(Ax+B) ,
where A=(c‘/"1,. .o, c‘/"k), ¢>0, is that B=0 and
(3:2) lim 1= F e )z, 60 _

oo l—G(txl, ¢2(t)x21 sy P (t)xk)

for all x=(xy, Xy - -, ¢;) such that 0< H(x)<1, where ¢,(t)=F'F,(t), i=
2,0, k.
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Proor. If Fe D(H), then it is known that we can take b™=0,
o=F(1/n) and af=F'F(af*)=,(a), i=2,---,k, nZ1 (see the
proof of Proposition 3.1 of Marshall and Olkin [4] and Appendix I).

Sufficiency. Since a{®— oo as n—oo and (3.2), we have that for
all x such that 0< H(x)<1,

c=lim 1=F @2, ¢:(a”)y, - - -, $(ai)2) _ 1y M1—F(@a™x))
e 1—G(a{P @y, $2(a{V)2s,+ - -5 i (@fP)2e)  ne n(1—Gl@a™x))

Then by Lemma 1.1 and Corollary 2.2 we have
G"(a™x)— H'*(x)=H(c/2y,- -+, c/xx,)=H(AX) .

Necessity. From the univariate result (Lemma 2.1 of Resnick [5]),
we see that B,=0, 1=1,.-.,k. So we have B=0. Since a®<a{**"—
o, for any sufficiently large ¢t there exists an n € N such that a®<t<
a™V, For any x=(z,,---, «;) such that 0< H(x)<1, we have 0 <x+#oo.
Moreover, ¢, is non-decreasing, ©1=2,---, k. Therefore we have

1-F(@""x) _ 1= Ftn, 0oy, 4:0m) < 1—F(a™x)
1-G(a™x) — 1-G(txy, go(t)2s, - -, pe(t)w) ~ 1—G(a™x)

for all x such that 0< H(x)<1. Taking the limits of above inequali-
ties, we have (3.2).

If we consider the particular case Fy=-...=F,, then we have the
following handy result.

COROLLARY 3.1. Let F and G be k-dimensional distribution func-
tions. Suppose Fi\=-..=F, and that there exist a™ >0, b, n=1 such
that F"(a™x+b™1)— H(x), where H,=®,, a>0, i=1,---, k. Then a
necessary and sufficient condition that

G"(a™x+b™1)—>H(Ax+B) ,
where A=cV*1, ¢>0, 18 that B=0 and

. 1-F(tx) _
i G ~°

Jor all x such that 0< H(x)<1.

Next we establish a k-dimensional version of Lemma 2.2 of Resnick
[56], which can be proved similarly to Theorem 38.1.

THEOREM 3.2. Let F and G be k-dimensional distribution functions
and a™>0, b, n=1 are mormalizing vectors such that F"(a™x+b™)
— H(x), where H=0,, a,>0, 1=1,---, k. Then a necessary and suf-
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ficient condition that
G (a™x+b™)—>H(Ax+B),
where A=(c7V*,--., ¢cV%), ¢>0, is that B=0, x%=x%=x"€ R* and

lim 1= F((@@0 6102y -+, b2 +2) _

010 1—G((t2y, go(t)2s,+ * -, Pe(t)2) +X°)
for all x=(x,---, %) such that 0<H(x)<1, where z}=z}, i=1,---,k
and ,(t)=ai—F 1 (Fy(z)—t)), i=2,-- -, k.

COROLLARY 3.2. Let F and G be k-dimensional distribution func-
tions. Suppose Fi=---=F, and that there exist a™ >0, b™, n=1 such
that F*(a™x+b"1)— H(x), where H,=",, a>0, i=1,---, k. Then a
necessary and sufficient condition that

G (a™x+b™1)>H(Ax+B) ,
where A=c"*1, ¢>0, is that B=0, 2, =x%,=2'€R', 1=1,---, k, and

lim 1—F(tx+2"1) —c
tlo 1—G(tx+x'1)

Sfor all x such that 0< H(x)<1.

Finally, we establish a k-dimensional version of Lemma 2.5 of
Resnick [5].

THEOREM 3.8. Let F and G be k-dimensional distribution functions,
and a™>0, b™, n=1 are normalizing vectors such that F"(a™x+b™)
— H(x), where H=4, i=1,---, k. Then a mecessary and sufficient con-
dition that

(3.3) G (a™x+b™)— H(Ax+B),
where A>0, B=b1, is that A=1, x%=x%=x" and

i 1—G(at)x+bE)
for all x such that 0< H(x)<1, where zi=2% , a,(t)=F*(F\(t)/e)— F;'F\(t)
and b,(t)=F'F,(t), i=1,---, k.
Proor. If Fe D(H), then we can suppose without loss of gener-

ality that b®=F'F,(b{) and a{=F-'(F,(b)/e)—F'F,(b®), i=1,---,
k. (See Proposition 3.3 of Marshall and Olkin [4] and Appendix II.)

Sufficiency. Since lim b™=x! and {b{} is an increasing sequence,

n—oo
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by (3.4) we have

¢ =lim 1—F(a(b)x+bb™) _ lim n{l— F(a™x+b™)}
ne 1—G(a®d)x+b(d™) e n{l—Gl@™x+bd™)}

Hence from Lemma 1.1 and Corollary 2.2 we have
G a”x+b™)— H"'(x)=H(x+B), where B=bl.

Necessity. Consider the marginal distributions F,, G; and H,=4,
1=1,-.., k, then by Lemma 2.5 of Resnick [5], we have A=1 and x%
=xy3=x°. Proposition 3.3 of Marshall and Olkin [4] implies

. 1—F(a®)x+b(t) _
3.5) ng D =—log H(x)

for all x such that 0<H(x)<1. Now we shall prove that for all x
such that 0<H(x)<1

im 1=Ga®)x+b®) _ _
(3.6) }1112 —Fg = g H®) .

From (3.3) and A=1, we have G"(@™x+b™)— H* ’(x). So it holds
lim s {1 —G(a(s)x+ B8(s))}=—e "’ log H(x) ,

where a,(8)=F;'(1/(es))—F*(1/s) and B(s)=F;'(1/s), i=1,---,k. (This
result can be proved similarly to Corollary 2.4.1 of de Haan [2].) Now,
let s(t)=1/1—F\(t)), then a(s(t))=a(t) and A(s(t))=b(t), thus we have
(3.6). The relations (3.5) and (3.6) imply (3.4).

COROLLARY 3.3. Let F and G be k-dimensional distribution func-
tions. Suppose Fi=-.-=F, and that there exist a™ >0, b™, n=1 such
that F*(a™x+b™1)— H(x), where H;=A4, 1=1,---, k. Then a necessary
and sufficient condition that

G"(a™x+b™1)—> H(Ax+B),
where A>0, B=b1, is that A=1, 2% =x% =2, 1=1,---, k and

. 1—Fa®)x+t1) _
1 —
e 1—Gad)x+il) ©

for all x such that 0< H(x)<1, where a(t)=F'(F.(t)/e)—t.

Finally, we remark that in general univariate tail equivalence does
not imply multivariate tail equivalence of the joint distribution func-
tions. Put, for example, F(x,, x,)=H(x,)H(x,) and G(x,, x,)=H(min (z,,
z,)), where H is a univariate extreme value distribution. This counter-
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example shows in addition that k-dimensional versions of Corollaries
2.1 and 2.2 of Resnick [5] do not necessarily hold.
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Appendix |

By Lemma 2.2.3 of Galambos [3] it is sufficient to prove

(A1) lim FCAM o g k.

w= FEE)

The relation

lim —" _ =limn (1—F,(a{))=1
P R e )

holds. Hence by Theorem 2.8.1 and Corollary 1.2.1 of de Haan [2] we

have (A.1).
Appendix |l
It is sufficient to prove
(A.2) F(aPz+bY)— A(%) ,

where a{®=F1(F,(b{)/e)— F'F,(b) and b>=F1F,(b), 1=2,---, k.
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Since the relation 1‘1_1:2 nF,(b™)=1 holds, we obtain
lim (1-F,m)r=e,
lim (1 —F,(6™)eyr=¢"".
Hence by Theorem 2.1.2* of de Haan [2] we have (A.2).



