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Summary

It is well-known that for a large family of distributions, the sam-
ple midrange is asymptotically logistic. In this article, the logistic
midrange is closely examined. Its distribution function is derived using
Dixon’s formula (Bailey (1935, Generalized Hypergeometric Series, Cam-
bridge University Press, p. 13)) for the generalized hypergeometric
function with unit argument, together with appropriate techniques for
the inversion of (bilateral) Laplace transforms. Several relationships
in distribution are established between the midrange and sample median
of the logistic and Laplace random variables. Possible applications in
testing for outliers are also discussed.

1. Introduction

The logistic distribution, which in standard form has distribution
function

(1.1) Fiy(z)=[1+exp(—2)]"", —oco<a<0,

has long been applied in a variety of statistical studies: Pearl and Reed
[10], Verhulst [12] and several authors used it in the study of popu-
lation growth; Amemiya [1], Berkson [3] and others employed it in the
analysis of bioassay data; Cox [4] and in several later articles, used it
for analyzing data from binary experiments; Plackett [11] considered
its use in problems involving censored data; Gumbel [7] showed that
it is the limiting distribution of the standardized midrange and the
extremal quotient of a wide family of distributions.

Among the family of distributions considered by Gumbel is the
logistic itself. Gumbel’s result shows that the asymptotic distribution
of the standardized logistic midrange is itself logistic. In this article,
we closely examine the logistic midrange. We obtain the characteristic
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function and the exact distribution of the logistic midrange and in the
process we exhibit an interesting functional duality displayed by the
logistic midrange depending on whether the sample size n is odd or
even. This duality carries over to the distribution of the non-standard-
ized midrange, producing a function of the logistic distribution when =
is odd and a function of. the convolution of two logistic distributions
when 7 is even. In addition, we exhibit an interplay between the
logistic distribution, the double exponential distribution and the distri-
bution of the midrange. In Section 2, the characteristic funection is
used to compute the exact distribution function of the logistic mid-
range. A discussion of the relationship to the double exponential, some
of the consequences with regard to ordered statistics from the logistic
distribution and the asymptotic properties of the logistic midrange are
given in Section 3. A possible use of the midrange to detect outliers
is outlined in Section 4.

2. The exact distribution of the logistic midrange

Let X, ---, X, be a random sample from a logistic distribution with
distribution function given by (1.1). Let X\, =Xy<---<X, be the
ordered statistics and let

2.1) M, =(Xy+ Xw)/2
be the midrange.

THEOREM 2.1. The characteristic function ¢.(t) of M, is given by

IT: (148/479) [(x it/2)/sin (z it/2)]?,  for n=2p,

2.2) ¢.(t)= )
;l']'=1 [1+42/(27—1)"][x it/sin = it] , for m=2p+1.

Proor. The characteristic function of M, is given by

tn®=nin—1) |" ['_esn(F @) F@Ifi() ful)dudy .

Using the transformations u=F;(x), v="F,(y), we get

@8  gO=nn—1)| | wola—w)1 -0 @-wr-tdudo .
Expanding (1—v)* and integrating term by term, we find

$u(t)=n(n—1) ,i, (it/2) Bk +mn+it, 1 —it/2)B(k+1+it/2, n—1)/k! .
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where B(z,y) denotes the beta function, and (2),=I'(k+=)/I'(x). Using
B(k+%, y)=B(x, y)(x):/(x+Y),, We express ¢,(f) in terms of a well-poised
hypergeometric function ;F;, viz.

) n+it, /2, 14+4t/2;
Pa(t)=Ga(it)s F ) . ,
n+1+14t/2, nm+at/2
where
G,(it)=n(n—1)B(n+1it, 1 —it[2)B(1+1¢/2, n—1) .
Hence, from Dixon’s formula (see Bailey [2], p. 13) we get

I(A+3t/2)T (1 —it/2)T{(n+it)/2} {(n—1it)/2)
I'(n/2) |

For further details, see George and Rousseau [6]. Thus if n=2p, (2.4)
reduces to

(2.4) $a(t)=

(2.5) du®)=[T A+t A—it/D) TT (L2747
(2.6) =[(x it/2)/sin (x it/2)]* jT (L4847 ,

and when n=2p+1, (2.4) reduces to
2.7) P ®)=T(Q1+13t/2) (1—1t[2) sec (z it[2) }i 1+#/25—-1)1,

=(x it[2) cosec (x it/2) sec (x it/2) fr 14825 —1)]

(2.8) — [ it/sin = it] f[ 14825 —1)] .

THEOREM 2.2. The density function of the midrange from a logis-
tic distribution is a Polya frequency function.

Proor. It is well-known that

sin (ixt) =ﬁ A+ .
it i=1

Hence, p,(t)=1/¢,(t) is an entire function given by
(2.9) ()= fr (1+t/4K?) f[, 1484457,
for n=2p, and by

(2.10) oo ®=TT (L-+e748) TT L+2757)
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when n=2p+41. It follows immediately from Theorem 3.2 a, p. 345 of
Karlin [8] that the density function of M, is a Polya frequency function.

In order to express the distribution function of M, in closed form,
it is helpful to introduce what we shall call the logistic polynomials.
Define the sequence of logistic polynomials {P,(x)} by

(2.11) Pyx)=1, P,(&)=D{®(1—2)P,y(x)}, =n=1,

where D=d/dx. Thus, the first few logistic polynomials are Py(x)=1,
P(x)=1—2x, Py(x)=1—62+6x?, Py(x)=1—14x+36x*—24x5.

The above are called logistic polynomials in view of the following
result :

LEMMA 2.1. If F satisfies the logistic differential equation, DF =
F(1—F), then its higher derivatives are given by

(2.12) D'F=FQ1—-F)P,_(F), n=1,2,38,---.
Proor. The proof is a simple consequence of (2.11) and the chain rule.

It is easy to find an explicit formula for P,. Writing
(2.13) P,(x)= z; (—1)*c(n, k)z* ,

the differential recurrence (2.11) yields the recurrence formula
(2.14) c(n, k)=Fk+1)[c(n—1, k)+c(n—1, k—1)] .

Equation (2.14), subject to the condition Py(x)=1, is easily solved, with
the result

(2.15) c(n, k)y=(k+1)!S(n+1, k+1) ,

where S(-,-) denotes a Stirling number of the second kind.

In the following theorem, we shall apply inversion methods to the
results obtained in Theorem 2.1 in order to calculate the exact distri-
bution function of M,. In doing so, we make the substitution {=ts
and express the previous result (2.2) in the language of (bilateral)
Laplace transforms. '

THEOREM 2.3. Let X,,---, X, be a random sample from the logistic
distribution with distribution function Fy(xz)=[1+exp(—x)]"', —oco<®
<oo. Let G,(x) denote the distribution function of the midrange M,=
Xp+Xw)/2. If a, -+, a, and by, by, b, , are defined by

(2.16) Q, (@)= ﬁ {1— =143 (-1 g,

(2jf1)’ }
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and

@.17) R,(x):ﬁ {1—_;?21} =145 (~1)b,a
respectively, then

(2.18) Gipn (@) =Fi(@)+ 33 (—1)'a, D*Fy(2)

and

(2.19) Gy ([2) = DiaHy @)+ 5} (—1)°b, D"+ (aHo(a) ,

where Fy(x)=(1+exp (—x))!, Hy(x)=(1—exp(—x))™" and D=d/dx. In
terms of the logistic polynomials, the requisite derivatives are given by

D' Fy=F(1-F)P,_(F,) ,

1—-(1+x)e" 0
D(fo):{ (1—e2)? — x+0,
1/2, =0,

(2.20)

and for r=2,

H(1—H)[zP, (H)+rP,(H)], =2+0,
(-1yB,, z=0,
where B, is the r-th Bernoullt number.

(2.21) D’(xH,,):{

PrROOF. From (2.2), we have the (bilateral) Laplace-Stieltjes trans-
form

(2.22) Sl e d Gy, () =Q,(x)rs cosec (ns) .

To invert this, we simply use well-known properties of the Laplace
transform along with the fact that = cosec (zs) is the transform of Fj.
We thus obtain (2.18). Equation (2.20) is simply a re-statement of
Lemma 2.1.

Again from (2.2), we know that
(2.23) S‘” ¢2dGy, () =R, (3/2) (n3/2)? cosec? (x8/2) .
Using an obvious scale change and the fact that {r cosec(z8)}® is the

Laplace transform of xH,(x), we obtain (2.19). Since H, is a solution
of the logistic equation, we know that
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(2.24) D'Hy=H,(1—-H,)P,_,(H) .

Now (2.21) follows from Dr(xH,)=«D"H,+rD"'H,, which is a simple
consequence of Leibnitz rule.

Remark. The individual terms of the first line of (2.21) on the
right hand side are badly behaved near x=0. This is the price we pay
for splitting H, from xH, in order to be able to write D"(xH,) as a
finite sum (in terms of logistic polynomials).. For numerical calculation
of D'(xH,) near =0, one should perhaps abandon (2.21) in favor of
the well-known infinite series

(2.25) D'(zHy)= ,ﬁ, (=1)**B, .Mk, |v|<2r,

where B, denotes the j-th Bernoulli number.
The coefficients a,,:--, a, and b;,---,b,, in Q, and R, respectively
are given by

a,=(—1)r"*2"(p!)’ éz‘,k (—1/2)*S(2p, 9)C(g, 2k)(2p—1)*"*[[(2p)'}* ,
and
b=(=1F 3 (-1%S@+1 ¢+DSE-+1, r+1/(p!),

where C(-, ) denotes a binomial coefficient and S(-, -) denotes a Stirling
number of the first kind (see Knuth [9]).

Asymptotic formulas for G, are readily obtained using the tech-
niques of Theorem 2.3 together with the well-known asymptotics of
the gamma function. From the basic result (2.4), we have the fact
that G,(x/2) is the inverse Laplace transform of = cosec (zs)I'(n/2+s)-
I'(n/2—8)/T*(n/2). Now the asymptotic approximation

I'n/2+8)I'(nj2—s) _ 2 2 (o 2 3
T(n2) =1428/n+28*(s*+1)/n*+0(1/n}) ,

yields
(2.26) G.(z/2)=y+y(1—y)[2P,(y)/n+2{P(y)+ Pi(n)}/n*+0(1/n%)] ,
where y=F,(x).

3. Some properties of the logistic midrange

Let X,, X;,---, X, be independent logistic r.v.s. with distribution
function Fy(x)=(1+4+e*)"!, and let Z,,.--, Z, be independent Laplace ran-
dom variables where Z, has parameter j, j=1,--., n. Specifically, for
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j=1,--., n, the density of Z, is given by

@3.1) fi(2)=27"je"7"", —00<z< 0
and the characteristic function of Z, by

(8.2) ¢, O=A+8/*), —oo<it<oo.

Let L denote equality in distribution. Then it is immediately clear
from equation (2.2), that when n=2p

(3.9) M+ 22X X2,

where Mp=(X(1,zp>+X(2p,2p))/2 and X(I,Zp)éXG,Zp)é' . 'éXﬂp,Zp) are the or-
der statistics of X,,..-, X;,. Furthermore, the characteristic function
of X(l,zp)+X(2p,2p) is g'iven by

1o (28) = ﬁ (A +8/7%) (x it/sin x it)* .
Hence, we get
(3.4) Xu.zp)+X(zp,zp)+él Z;éXH"Xz .

Now let n=2p+1. The sample median X, has characteristic func-
tion

(35)  dxow®O=ICP+ DN/ e {F@L—F@)fi(a)ds

=[P+ D/ |, [w/(— w1 [u(1—u))7du
=(!) "I (p+1+it)[(p+1—it)

(3.6) =le (1487 (x it/sin x it) .

Hence, using the characteristic function of 2M;, from (2.2), we have
P2p(2t) = P xcpen> (B) (7 t[siN 7 1)

Thus

3.7 Xap+ Xapap=Xoprtipot+ ¥,

where Y is an independent logistic random variable with distribution
function Fj.
Still with n=2p+1, we have from (2.2) the obvious relation

3.8) M.+ fJ Zy =X, .
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Now let n=3. It is easily seen from (3.4) that
Px,,(O)=(1+1")(x it/sin x it) .
Hence, we have immediately

(3.9) (Xa,0 +X(a,a))/2éX(z,s) .

4. Possible applications

Although the main use of the sample midrange is in the estima-
tion of the location parameter in a symmetric distribution, the proper-
ties of the midrange obtained above suggest a simple method of testing
for the presence of an outlier. Specifically, consider a population with
symmetric density f and distribution F satisfying

(4.1) lim d/dz {[1—F(z)]/f(2)}=0 .

Such distributions have tails which die at an exponential rate and are
thus called exponential type. Let X,---, X, be an observed sample and
suppose that one of these observations is suspected of being an outlier.
Without loss of generality, let X,, be the suspected observation. Since
it is well-known that the midrange is quite sensitive to the presence
of an outlier, a test using M, as a test statistic could be considered.
When F is the logistic distribution, critical points for the test of hy-
pothesis that the sample has one outlier can be obtained using the ex-
act distribution of M, obtained in Section 2. More generally, for any
distribution satisfying (3.13), Gumbel [7] has shown that the sample
midrange is asymptotically logistic in distribution. Hence, for a large
sample test, the logistic distribution can be used as the approximate
distribution of M, under the null hypothesis. For moderate sample
sizes, better approximations are needed for the distribution of M,. This
is particularly so when F' is the normal distribution function. In this
case the exact distribution of M, in closed form is unknown, and M,
converges very slowly to logistic in distribution (Galambos [5]). Hence,
an approximation is needed here. The goodness of any such approxi-
mation can be checked using the logistic midrange for which we have
already obtained the exact distribution. Constructions of various tests
for outliers based on the midrange and the generalized midrange are
being investigated by the authors.
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