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Summary

Let X be a standard normal random variable and let o be a posi-
tive random variable independent of X. The distribution of y=¢X is
expanded around that of N(0,1) and its error bounds are obtained.
Bounds are given in terms of E (¢’ o 2—1)*, where o*Vo~? denotes the
maximum of the two quantities ¢* and ¢°%, and k is a positive integer,
and of E (*—1)*, if k is even.

1. Introduction

Let X and ¢ be mutually independent random variables and let ¢
be their sum; £é=X+e. If ¢ is small in some sense, then we would
expect that the distribution of ¢ is close to that of X’s. Assuming
the smoothness of the distribution function (d.f.) G of X, Fujikoshi [3]
gave an expansion of the d.f. F of £ around G and its error bound.
In particular, when G is the standard normal distribution function @
and when the conditional distribution of ¢ given a random matrix V
is the normal distribution N(0, »(V)), where h is a positive function,
Fujikoshi showed that the error bound is given in terms of a higher
order moment of A(V).

In view of the particular property of the normal distribution, ¢
has the identical distribution with that of the random variable =
v 14k(V) X in this case. This is a special case of the scale mixtures
of the normal distribution. A distribution F' is said to be a scale mix-
ture of that of X’s if there exists a positive random variable s inde-
pendent of X such that the variable p=0X, follows F.

The problem of approximating the scale mixtures of the normal
or of other distributions has received recent interest. Keilson and
Steutel [7] investigated the properties of the mixtures and established
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some moment measures of the distance of a scale mixture from its
parent distribution. In particular, they showed that when X follows
the standard normal distribution N(0, 1), the kurtosis y(¢X) (=3 E (¢*
—1), if E(¢*)=1) gives a convenient distance between the distribution
F of ¢X and N(0,1). Heyde [5] and Heyde and Leslie [6] related
7(¢X) with the usual uniform measure of distance showing that the
inequality

sup |Pr {eX=x} —0(x)|<0.857(s X)

holds provided E (¢*)=1. Hall [4] noticed that 0.85 can be replaced by
0.648. Similar inequalities for classes of distributions which include
scale mixtures of the exponential distribution were obtained by Azlarov
and Volodin [1], Brown [2], Heyde and Leslie [6] and Shimizu [8]. Hall
[4] proved some inequalities assuming that the distribution of X has a
probability density p(x) such that xp(x) is bounded.

The present article is concerned with the scale mixtures of the
normal distribution. Fujikoshi’s results ([3]) essentially imply that if ¢*
=1 with probability 1, then the following inequality holds.

Pr{cX <z} —aJ(x)—fg’;: 2!111 E (= 1) Hy_(2) (%)
§2+k1 E (o'~ 1)* sup | Hy,(2) 9()|,

where ¢ and H’s are the probability density of N(0,1) and the Hermite
polynomials, respectively. We shall give a similar inequalities without
assuming ¢'=1. Our result is generalized to the non-central case, i.e.,
the situation where X is N(g, 1) with p£0. We also generalize to the
expansion of Pr {ne€ A} for any Borel set A.

2. The results
For a positive random variable ¢, let k=1 be an integer and write

@=E(@—1)}, 1=0,1,2,---,k, and &=E(¢'=1),

if they exist. Note that «, is expressible as a linear combination of
the moments of even order of =¢X: As

E (4)=E (¢¥-X*)=E (¢*)-E (X ”>=~——-(22323 E (o%),
we have

a‘___g(;) E ("”)(_1)1_&,,2:},(;,) (—1()21;)’;;2’1)! E (7).
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Put

(2.1) G(x)=0(x)— 2: ———a; Hy (%) p(2) .

2‘ll

The following theorems state that if ¢ is close to one, then the d.f.
F(x) of the variable =0¢X is approximated by G.(z).

THEOREM 2.1. If E (%) and E (o7*) exist, the following imequality
holds.

2.2) sup |F(x)—Gk(x)|§2_1k E (¢*Vot—1)

1 - . .
(é ok (ax+a), of k 18 mn) .
THEOREM 2.2. If E (o%) exists for some even integer k=2, and if
E (6*)=1, then
(2.3) sup [F(2)—G.(z)|< A(k) E (' 1)*,

where

|4.(2)| 1
Al)= Inf, sup sup | o ek |

with

4,)=0al)—0@+5 By (@) etw)

Numerical computation shows that A(2)<2.48, A(4)<11.26 and A(6)=
51.24.

The result can be extended to the non-central case. Let x be a
real constant and consider the variable

1=0o(X+p)—p.
Writing
@d)  C@=00- 3 Zhr (@D 1) Hn @)
l< m
we have
THEOREM 2.3. If E (¢%*7%) and E (67%**%) exist, then
(2.5) sup |F'(2) —Gu(2)|<Bet+ 74 »

where
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ﬂk-ziE(a Voi—1)F,  and

E ((0Vo'—1)4 Vo i—1)") .

k/2 k k—1
=2 | ] 5 I’(m;—k/2)

271:]0' m=0

Theorems 2.1 and 2.2 are not sufficient for the purpose of approxi-
mating Pr {» e A} for various sets A’s. If, for example, A is a finite
interval [a, b), then the probability Pr{s¢ A} =F()—F(a) can be ap-
proximated by G.(b)—G.(a) only within the error 2.E (¢*Vo2—1)*2xk.
The following theorems are stronger versions of Theorems 2.1 and 2.2,
respectively.

THEOREM 2.4. Under the assumption of Theorem 2.1, the distribu-
tion F has a probability density f(x), and for any Borel set A, the fol-
lowing inequalities hold.

@6) [Prinea)-| da@)|s| 1/@-a@idesZ E@vaoy,
where

9:(2)=Gi(x)= 2 —=—a, Hy (%) ()

2‘l'
THEOREM 2.5. Under the assumption of Theorem 2.2, we have

@.7) lPr [neA}— SA de(x){ <4kA(k) E (= 1)*.

3. Proofs

If X is a standard normal random variable and if ¢ is a positive
random variable independent of X, then the d.f. F(x) of the variable
n=0X is given by

F(z)=E (0(z/0)) .

We start with approximating the d.f. &(z/s) of N(0, ¢*) for a fixed o.
The distribution N(O, ¢°) has the density ¢(z/s)/¢ and its characteristic
function is given by e 2. Therefore, the inversion formula gives

lso(_af.) —¢($)=E]'__ Sm (e"'ztz/z__e—t’/Z) e—u:dt .
g ag T J—o

Integrating the both sides from 0 to z, and noting that (e~’*"2—e~"?)Jt
is an integrable odd function, we obtain
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e-u’;’/z _ e—z’/z

@3.1) d)(x/a)—(b(x):El; S’_’w et dt .

—t
On the other hand we have
(3 .2) et — e—(»:’—l)z’/z P

= 2 ,—t2/2 1 ot — 1) (it)2k g~ 1 +oc? - 1?2
=5 o =Dl 1yGyre :

where 0<6<1, and differentiations of the both sides of

i Sm 6"2/26_“"dt=¢(a})
2r J-e

lead to
..21_ S‘” (it)e-e-vsdt= H(w)p(r), 1=0,1,---
(4 -—00
Then it follows from (3.1) and (3.2) that

3.3) 4,(x)=(x/s)— ¢(w)+5‘_. (6" —1)' Hy (%) ()

2‘l'

2 kl ( 1/2)1;(0 l)kS tzk—le—u+v(¢’—1))c’/ze—uzdt .
PrROOF OF THEOREMS 2.1 AND 2.2. As 0<60<1, the absolute value
of the integral in (3.3) is bounded by

J(k, 0)=2 S” {E-1g-Uanizgy
0

where 1A¢® is equal to 1 or ¢* according as ¢*=1 or o*<1. It is easy
to see that J(k, o)=2*I'(k) if o=1, and J(k, o)=0"*J(k,1) if o<1.
Therefore

l4.(®) ==

S e

lk (’Va i—1)¢.
Taking the expectation of the both sides, we obtain
[F@)—Gu@)|=IE (4=)|SE (4@)) S50 E(@*Vo—1),

To prove (2.3), let 0<c<1 and note that
Pr{o=c}=Pr{s—1|2z1-¢} <E ("—1)/1—C")*,
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and that
J(k, o) J(k, 1)/ <28 T(k)/c* if o=c.
It follows that

E(4@D=| 14@)d Pr (s=7)

Sos:jzld(a:)[ Prio<ec}+—1 27rkc”‘ S (r*—1)*d Pr {o <7}
= {sup [4.(x)|/(L—c*)*+1/(2rkc™)} - E (o' —1)* .

PROOF OF THEOREM 2.3. For a fixed ¢, put v=p(s—1). Then, the
key relation becomes

em—ﬁﬂ/z . e—z’/z

(3.4) ¢((:v——v)/a)—¢(x)=-217 S‘; evdt .

—it

It suffices to prove

35 E|o@-»o-0@+ 3 _____”2(:”“1) | @oprmievingear
1<k, m<k
Shtre-
We have

em—a’c’/z _ e—z’/z — (e{»t+(a2-1)(u>’/2 1) e—z’/z

L (0 —1) (,Lt)l+2me—t2/2

3 1 m ]|
Lna, 2rlim

1
+ o ¢

B ik (02_1)7" s a\2m ,—t2/2
+7cTy (it) Eo—2Mm! (it)'me~"?

ot — 1)k etvt(,l:t)% e-(a’-m’a/z e t2/2

where 0<6<1 and |B|<1. Substituting this expression into (3.4), we
obtain

' d)((a; - v)/a) - ¢(x) + l+%zl vlz(:zl'_'rr]l:‘)m S:o (it)Hzm—l e_tm e dt
1<k, m<k o

él S: |(g*—1)*| 2t g=HAnDr gt 2% ]
T

© 1 k=t 1
+‘7; Eom
(Vo 1)'=+—4“—2”|k'| (ovori—p 5 LOEED Gy oy,

l p"(g’ _ l)m I Sw gemtk=1 e—:’(l/\a’)/z dt
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as was to be proved.

PrROOF OF THEOREMS 2.4 AND 2.5. The distribution F has the prob-
ability density

sr5(24(2)

For a fixed ¢>0, let 4,(x) be as in (3.3). Then, differentiation
gives

(3.6) a.(x)sd:(x)=lso(ﬁ) —£(2) (),
g ag
where

e@=5 = H@

is a polynomial of degree k—1 in . As the ratio —1-<p<-a-”-> /go(x) is an

g ag
exponential function of % it is easy to see that the 3,(x) changes its
signs at most 2k times and is positive or negative for sufficiently large
|| according as ¢>1 or o<1. If, for instance, ¢>1, there exist at
most 2k real numbers

6 (E—0)<eSGS S0 <Cupr (=),
such that

3,(x)=0 if xe /Qo Cy » and

k
6,(33)§0 if ze le ng_1 ’
where C, denotes the interval [c;, c,.,).
Noting that Sw 3,(x)dx=4,(c0)—4,(—o0)=0, we obtain,

k

) [ l@ide=33{ da@-3 ~da

—2% S d4,(2)=2 3 (4(Csy41)— A.(c1)
j=0 Jeyy J=0

=1

1 -
<4k— (o’ 1),
<4k m (*Vai-1)

Similar argument can apply to the case when ¢<1 to obtain the in-
equality (3.7). Therefore
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|Pr e A} — SA dG,,(x)[ < | SA E (3,(x))dac’
<E|"_|0.@)ldz
é% E (¢*Voi—1),

as was to be proved. The proof of the inequality (2.7) is quite similar
and we omit the details.

4. Examples

Exaples 1. (t-distribution) Let X be a standard normal random
variable and let y2 be independent of the X and have the chi-square
distribution with n-degrees of freedom.

Put 6=+ (n—2)/3: and »=0¢X. Then the variable
g=vnfn—2) 7
has the t-distribution with n-degrees of freedom. As x2/2 has the
probability density x?¢~*/I'(q+1), for x=0, where q=—"23—1, we have

for any real ¢ (=£29),

%)= 1 ® C/2 Mg p—T — F(q—0/2+1)
B ()= pgy ), @ areda=qr TTAEED.

If, in particular, p is a positive number, then
E (¢)=¢"/g",
E (¢7")=(q+D0)"/g?,

4.1 < g1 =L
(4.1) E (") 15 w(@), and

E (o~ V)= (g+p—1/2)?
qP

u(q) ,

where ¢”=q(¢g—1)(¢—2)---(¢—p+1), ete., and
vq -T'(g+1/2)

4.2 =

(4.2) u(q) T@+1)
1 .1 5 2 1
=1 8q + 128¢* + 1024¢° 32768¢* +O( ¢ )

Also,
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ap=E(0'z_1)P=§(?)(_I)P—lql/q(l), p=1,---, k and
4.3) i
a@,=E (e?—1)'=>) ( )(—1)""(q+l)‘”/q‘ .
=0\ ]

Therefore, setting

Gy(x)=9(x) ,

G‘(x)=Gz<x)—(—I——Hs(m)+—1-2-—1—m(x))¢(x), and

(4.4) 8(q—1) (@—1)®
— _ q+6 3¢*+86¢g+120
Gi#) =) TR Hio) + 2L Hy(x) Jo(z)

we obtain the following inequalities for the error 4,=sup|Pr {y<z} —
Gu(x)|

=1( 1 ,q+2
Azgﬂz_h(q_ﬁ : )
_ 1 (3(g+6) | 3¢"+269+24
(4.5) { 4i=8:= 87r<(q—1)“” + e >, and
_ 1 (5(3¢*+869+120) , 15¢°+340q*+1124¢+1720
4ishe= 12;:( (¢—1)® + ¢ ) )

Table 1 shows the values of 4,=sup|F,(x)—G.(x)| and their bounds p’s

for several values of k and n (=2¢+2).

Table 1. Approximation to ¢-distribution

n Y. Ba 4. Ba 4 Be

6 0.0299 0.1592

8 0.0208 0.0840

10 0.0160 0.0564 0.0255 0.2263

12 0.0130 0.0422 0.0121 0.0693

16 0.0094 0.0279 0.0045 0.0188 0.0239 0.1670
20 0.0074 0.0208 0.0023 0.0045 0.0055 0.0249
30 0.0048 0.0126 0.0008 0.0024 0.0007 0.0021
40 0.0036 0.0091 0.0004 0.0011 0.0002 0.0005
50 0.0028 0.0071 0.0002 0.0006 0.0001 0.0002

Ezxample 2. (M.L.E. for a multivariate regression model) Let Y;,
Y; -+, Y, be a random sample from a p-variate normal distribution
N (B, B, %), where B is a given ¢Xxp matrix of rank ¢<p, B is a ¢
dimensional vector of unknown parameters and 3 is an unknown posi-
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tive definite matrix. The maximum likelihood estimator of 8 is given
by
p'=(BS-'B)'BS-'Y,

where Y=J3Y,/n and S=3(Y,—Y)(Y,—Y). Fujikoshi [3] considered
the distribution F' of

n=vnd'(f—pal1,
where a is a given ¢ dimensional vector and

A=(a'(B3'B')'a)"*.
The distribution F' has the characteristic function

E (e-t’(1+V’W'1V)/2) ,

where V and W are mutually independent and follow N,_,(0,I) and
W,_o(I, n—1), the Wishart distribution of. dimensionality r=p—q with

n—1 degrees of freedom and covariance matrix I, respectively. This

means that the distribution of 7, is identical with that of »=¢X, where
=+ 1+ V'W-'V. Fujikoshi approximated F(x) by

(4.6) Gyz)=0(2)— 2 o l' ——h Hy (%) () ,

where

4.7 h,=E (K(V)) (=E (6*—1) in our notation)
r . r+2  r42l-2

Thn—r—2 n—r—4 nm_r—2'

and he obtained the following error bound.

(4.8) | F(@)—Gu@)l= 5y k' bk »

where

l,=sup |H,_(x)p(x)| .
In particular, (4.8) gives

(4.9) | Fla)—~0(a) S5 e f_ and
1.39
(4.10) F(a)—0(z)+~ hla:go(x) Sz

In fact the inequality (4.9) can be improved :
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Putting ¢=+ (n—7r—2)/(n—2) , consider the distribution Fi(x) of the
variable ¢n;. In the above notation, ¢y has the identical distribution
with 7p,=csX. But we have

en=E ((co))—1)=c*E () —1=cQ1+h)—1=0, and
e =E ((co)—1)*=E (co)'—1=c' E (1+h(V))'—

2r
=H(L+2hy+hy)—1= <h,.
At 2t b= e = =™

Therefore
(4.11)  |Fy(z)— ¢(x)|S—E((00)2V(00)' -1y
—l =
r(n—2) _ 1 n—2
Zn(n r—2(n—r— 4) 2 n—r— 2)(r+2)
This means that we can expect that Pr{vNa'(§—B)a/i<z} can be

better approximated by (D<\/ #é' x) than by O(x) if n is large as

=
41:0‘

compared to 7.
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