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Summary

In this paper we introduce the concept of one-directionality which
includes both cases of location (and scale) parameter and selection pa-
rameter and also other cases, and establish some theorems for sharp
lower bounds and for the existence of zero variance unbiased estimator
for this class of non-regular distributions.

1. Introduction

For the lower bound for the variance of unbiased estimators, the
most famous is the so-called Cramér-Rao bound. But the Cramér-Rao
bound and its Bhattacharyya extension assume a set of regularity con-
ditions. Chapman and Robbins [2], Kiefer [4] and Fraser and Guttman
[3] obtained bounds with much less stringent assumptions, but they still
require the independence of the support of the parameter # or almost
equivalently that the distribution with 6+6, is absolutely continuous
with respect to that with 6=46, when 6, is the specified parameter value
at which the variance is evaluated. Recently in the non-regular cases
the Cramér-Rao bound has been discussed by Vincze [8], Méri [5] and
others.

In the previous paper, Akahira, Puri and Takeuchi [1] get the
Bhattacharyya type bound for the variance of unbiased estimators in
non-regular cases.

In this paper we introduce the concept of one-directionality which
includes both cases of location (and scale) parameter and selection para-
meter and also other cases, and show that the bound for the variance
of unbiased estimators is sharp in the sense that the actual infimum
of the variance of unbiased estimators is equal to the bound for a
specified 6,, for this class of non-regular distributions. We also estab-
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lish that for a wide class of the non-regular distributions the infimum
of the variance of unbiased estimators can be zero when the sample
size is not smaller than 2.

A simple but rather general case of the class of distributions of
which none dominates another is that it is characterized by a real pa-
rameter 6 and the distribution shifts monotonically as ¢ changes. For
one dimensional random variables the case can be visualized by the
following example.

6,

03

01< 02< 03

Mathematical definition for such cases in a rather general set-up
is given in Section 2 and is termed as one-directional family of distri-
butions.

2. Definition of the one-directional family of distributions

We assume that we are given a model consisting of a sample space
(1, B) and a family P={P,: 0 € 6} of probability measures, where a pa-
rameter space # is an open subset in a Euclidean 1-space R'.
Throughout the subsequent discussion we shall assume the following :
(A.2.1) For each 0€8, P, is absolutely continuous with respect to a
o-finite measure g and the corresponding density w.r.t. g is f(x, 0).
Let A(6) be a support of f(x, §), that is, A(0)={x: f(x, 6)>0}. The
determination of A(6) is not unique so far as any null set may be added
to it, but in the sequel we take one and fixed determination of A(6)
for every 0 ¢® which satisfies the following:
(A.2.2) For any disjoint points 6, and 6, in 8, neither A(6,)DA(f:)
nor A(6,)CA(6;).
(A.2.3) For 6,<6,<0,

A(B)NA(6;)CA(6,)NA(8))
A(0,)NA(G;)C A(6;) N A(05) .
(A.2.4) If 6, tends to 6 as n— oo, then
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(5, p,400)440)=k(( 8, y 4@)440))=

where EAF denotes the symmetric difference of two sets E and F.
(A.2.5) For any two points 6, and 4, in & with 6,<6,, there exists
a finite number of &, (1=1,---, k) such that 6,=¢,<¢,<---<&,=6, and
HAEGINAE >0 (=1, k).

Then < is called to be a one-directional family of distributions if
the conditions (A.2.1) to (A.2.5) hold.

3. The lower bound for the variance of unbiased estimators
when X is a real random variable

Now suppose that X is a real random variable with a density func-
tion f(x, #) whose support is an open interval (a(f), b(6)), then the con-
dition of one-directionality means that a(6) and b(6) are both monotone
and continuous functions. Without loss of generality we assume that
a() and b(#) are monotone increasing functions. Therefore we can for-
mulate the following problem. Let y=6=R!. Let X be a real random
variable with a density function f(z, ) (with respect to the Lebesgue
measure u) satisfying the following conditions (A.3.1) to (A.3.7):

(A.3.1) f(z,00>0 for a(d)<x<b(0),
f(x, )=0 for r=a(f), x=b(9),

where f(x, ) is continuous in # and # for which a(d)<x<b(f), and
(p+1)-times continuously differentiable in 6 for a.a. z [¢] for some non-
negative integer p, both of functions a(4) and b(¢) are p-times continu-
ously differentiable and a’(6)>0, b'(6)>0 for all 4.
(A.3.2) lim f(x, 0)— hm f(a;, 0)=0,

z—a(0)+0

and for some positive integer p

lim —f(x,ﬂ)— lim —f(x,ﬂ) 0 (=1---,p-1),
z—a()+0 00 2-+0(6)—0

f(z, 0)=4,0), lim -—-f(x, 0)=B,(9) ,

x—~a(0)+o 60" Z-b(8)—0

where A,(6) and B,(f) are non-zero, finite and continuous in 4.
(A.3.3) (0‘/06")f(x, 6) (2=1,---, p) are linearly independent.
(A.3.4) For some 6,€6
YOS { tf(x’ 0°)}
<S - dp(x)

ap  f(x, 6y)
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is finite for each 1=1,...,k, and

a%) f (2, 6o) #
is infinite for each i1=k+1,---,p unless Crpy=-+++=¢,=0.

(A.3.5) For 6,€60 there exists a positive number ¢ and a positive-
valued measurable function p(x) such that for every x € A(f) and every

0 € (6o—c¢, 6o+¢), po(x)>f(x, 6), and for every 0 € (fy—¢, by+¢), Sw)lr(x)l
X f(x, 6)dp < oo implies S |7(®) | p(@)d e < oo.

A0
0e€(05—¢,0p+¢) 0

(A.3.6) For each i=1,..-, p+1,

1 _ ,l:. .
M TN

ze ju X A0y +Tn)— A(0p)

(A.3.7) For each 1=1,---, p+1,

tm ,E‘}},’o) (@) <.

Note that the conditions (A.3.5), (A.3.6) and (A.3.7) are assumed
to obtain the Bhattacharyya bound for the variance of unbiased esti-
mators (see Akahira et al. [1]).

First we consider the special case when p=0, then we have to
modify slightly the condition (A.3.2) as follows:

(A.3.2) lim f(x, 0)=A4,(0)>0, lim f(x, 6)=B,(6)>0.
z—a(6)+0 2-b(0)—0
In the following theorem we shall have a lower bound.

THEOREM 3.1. Let g(d) be continuously differentiable over 6. Let
g(x) be an unbiased estimator of g(6). If for p=0 and a fixed 6,, the
conditions (A.3.1), (A.3.2)', (A.3.5), (A.3.6) and (A.3.7) hold, then

min  V, (§)=0,

¢: unbiased

where V, (g) denotes the variance of § at 0=0,.
Proor. We first define
g(x)=g(0,) for a(0,) <2 <b(6y) -

Since a(6,)<a(0)<b(8,)<b(@) for 6>40,, it follows from the unbiasedness
‘condition that
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6D 90)={"" 1)@ 0dp={" )1, 0du+ (" o)z, Oy

Putting

moy={_ " 9@, 0¥
we have by (3.1)

3.2) §:Z:) (@) f (@, )dp=g(6)—h(0) .

Differentiating both sides of (8.2) with respect to 4, we obtain
(9)
63 VORMIG] 10| fa 0du=00)-1(0).

Differentiation under the integral sign is admitted because of (A.3.7)
with p=0. If §(x) satisfies (3.3), then it also satisfies (3.1) since g(6,)
=h(6,). Since by (A.3.1) and (A.3.2), b'(§)B,(8)>0, it follows that the
integral equation (3.3) is of Volterra’s second type, hence the solution
g(x) exists for b(6)>x=b(f,). Similarly we can construct j(x) for z<
a(6,). Repeating the same process we can define §(x) for all z. Hence
we have

min  V,(§)=0.

¢: unbiased

Thus we complete the proof.

The following useful lemma is a special case of the result by
Takeuchi and Akahira [7].

LEMMA 3.1. Let g(6) be p-times differentiable over 8. Suppose that
the conditions (A.3.3) and (A.3.4) hold and G 1is the class of the all esti-
mators g(x) of g(0) for which

[oo 8 (=, 00 =0(0,)

b(GO) aJ (1) ) — oo
Lo B2 f@ )] du=g®0)  G=1--.p),
where g () is the i-th order derivative of g(6) with respect to 0. Then
di nf; Vo @)= (00), -, g% (0a)) 47 (g (60), - + -, 9% (60))'
€
where A 18 a kXk matriz whose elements are

2 _S»(oo) ag‘f( y 00) —— 30’ f(x 0o)d G d=L k)
Y aéy) f(x, 6,) # ’ oo
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The proof is omitted. In the following theorem we shall get a
sharp lower bound.

THEOREM 3.2. Let g(6) be (p+1)-times differentiable over 6. Let
g(x) be an unbiased estimator of g(6). If for p=1 and a fixed 6,, the
conditions (A.3.1) to (A.3.7) hold, then

inf  V,(§)=v:(0) ,

¢: unbiased

that 18, the bound v,(0,) is sharp, where
V% (00)=(g"(60), " - -, g (6D A7 (g (80), - - -, g*(60))
with a kxk matrix A given in Lemma 3.1.

PrOOF. From the unbiasedness condition of j(x), (A.3.2) and (A.3.7)
we have

ORI YR R O
@5 | i@ s odu=go@) (=1 p).

b(8p)

By Lemma 3.1 it follows that the sharp lower bound of V,o(f;)=s )
a(vo

{0(x)—9(0):f (z, Oo)dp(x) under (3.4) and (8.5) is given by (g%(6y),- -,
g®(0)) 47(g(Bo), - - -, g®(00)), i.e.,
(3.6) inf  V,(@)=(g"(60)," -+, 9*(0:)) 47 (g% (8o), - - -, g9*(60))
§:(3.4), (3.5)
=(0y) (say).

Note that the right-hand side of (3.6) is the Bhattacharyya bound for
the variance of unbiased estimators at =46, (see Akahira et al. [1]).
From (8.6) it follows that for any ¢>0 there exists §,(x) in the inter-
val (a(d,), b(6,)) satisfying (3.4), (3.5) and

Iflo(gx) Sve(00)+¢ -

We can extend g,(x) for x outside (a(6,), b(6,)) from the unbiasedness
condition

3.7) S”i’: §.@)f(z, 0)du(@)=g(d) for all 6e8.
For 6>40,, i.e., b(6)=b(6,) we put

moO={" 3.0 (@ 0)du()
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By (3.7) we obtain
(3.8) . 8.@)f (s, 6)iu(x)=9(6)—h(0) .

Differentiating (p+1)-times both sides of (3.8) with respect to 6, re-
cursively, we have by (A.3.1), (A.3.2), (A.3.5), (A.3.6) and (A.3.7)

foo 8.0 1@, 0] dutx) =g 0) 1) ,

b(8y)

5 (» (¢)
Sb(vo)g'( ){30" Sz, 0)}d‘u(:v) =g®(8)—h®(0) ,

(39) B,Ob 00000+ @ )| fw, ) du=g o (0)—h(0)

Differentiation under the integral sign is admitted because of (A.3.7).
If g.(x) satisfies (3.9), then it also satisfies (8.8) since g’ (6,)=h"(6,)
(2=1,-.+, p) and g(6,)=h(6,). Note that h**"(8) is determined by the
values of §,(x) for a(f)<z<b(f,), where it is already given. Since the
integral equation (3.9) is of Volterra’s second type, it follows that the
solution §,(x) exists for b(d)>x=b(6,). Similarly we can construct §,(x)
for x<a(f,). Repeating the same process we can define §,(x) for all x.
Hence we have

inf  V,(8)=v.(0)

¢: unbiased

i.e., v,(6y) is a sharp bound. Thus we have completed the proof.

We shall give one example corresponding to each of the situations
where the conditions (A.3.1), (A.3.2)/(A.3.2) to (A.3.7) are assumed.

Example 3.1. Let X be a real random variable with a density
function f(x, ) (with respect to the Lebesgue measure ) satisfying
each case.

(i) Location parameter case. The density function is of the form
Sf(x—0) and satisfies the following :

f@)>0 for a<z<b,
f(z)=0 for r<a, x=b,

and lim f(z)>0, lim f(x)>0 and f(x) is continuously differentiable in
Z—a+0 x—b—0

the open interval (a, b).
(ii) The case on estimation of g()=60 with a density function
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c(1—(x—0)%)! for |lx—0|<1,
for lz—0|=1,

Fla—0)=

is discussed in Akahira et al. [1], where ¢>1 and ¢ is some constant.
(iii) Scale parameter case. The density function of the form
Sf(x/0)]6 satisfies the following:

f(x)>0 for 0<a<x<d,
f(x)=0  otherwise,

and satisfies the same condition in (i).

(iv) Selection parameter case (e.g., Morimoto and Sibuya [6]).
Consider a family of density functions whose supporting intervals de-
pend on a selection parameter 4 and are of the form (4, b(¢)), where
—o00<f<b(f)< o and b(F) is a nondecreasing function of # and almost
everywhere differentiable. Such a family of density functions is spe-
cified by

PO for  g<w<b(f),
f(z, 0)=] FO)

0 otherwise ,

where p(x)>0 a.e. and F(H):S:m p(x)dp(x). Note that the cases (i),

(iii) and (iv) correspond to the case p=0, and (ii) corresponds to the
case p=q¢—1, where ¢ is an integer.

4. The lower bound for the variance of unbiased estimators
for a sample of size n of real-valued observations

Now suppose that we have a sample of size n, (X, -, X,) of which
X.’s are independently and identically distributed according to the dis-
tribution characterized in the previous section. Then we can define
statisties

Y=max X,+min X, Z=max X;—min X;
15isn 15isn 13isn 15isn
and we may concentrate our attention on the estimators depending only
on Y and Z. Since they are not sufficient statistics, we may lose some
information by doing so. More generally, for a sample of size n, (X,
.-+, X,) from a population in a one-directional family of densities with
a support A(f), we can define two statistics

E:Sllp {0|Xt € A(o) (’l:=1,- ) n)} ’
0=inf (6] X, € A(f) (i=1, -, n)}
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and also define

1 .~ 1 .-
== @F+90), = —9).
Y=20+0) Z=50-9

There are various ways of defining the pair of statistics Y and Z, but
disregarding their construction we assume that there exists a pair (Y, Z)
which satisfies the following.

Let Y and Z be real-valued statistics based on a sample (X, -, X))
of size n for n=2. We assume that (Y, Z) has a joint probability den-
sity function f,(y, z) (with respect to the Lebesgue measure p,,) satis-
fying

fo(y, 2)=1s(y|2) hy(2) , a.e.,

where f,(y|2) is a conditional density function of y given z with respect
to the Lebesgue measure g, and hk,(2) is a density function of z with
respect to the Lebesgue measure p,. Note that if Z is ancillary, h,(2)
is independent of 4. We assume the following condition :

(A.4.1) For almost all z [g,]

fiw|)>0  for @, (0)<y<b,(9),
fo(?/lz)ZO fOI‘ yéal(o)’ yéb,(o) ’

where a,(d) and b,(f) are strictly monotone increasing functions of 4
for almost all 2z [g,] which depend on 2z, and

hy(2)>0 for c<z<d,
hy(2)=0 for 2<Z¢, z2d,

where ¢ and d are constants independent of 4. We also assume that
for almost all z[g,], f,(y|2) instead of f(x, #) satisfies the conditions
(A.3.2) to (A.3.7), and we call the corresponding conditions (A.4.2) to
(A.4.7).

Let g(y, 2) be any unbiased estimator of g(f). We define

@) wO="" oA Wiy, for  aa zlu).
Further we assume the following condition :
(A.4.8) &.(00)=9(6) for a.a. z[gl],

#2(6,)=0 for a.a. z[g] (¢t=1,---,k),

where ¢{°(f) is the k-th order derivative of ¢,(6) with respect to 4.
In the following theorem we shall show that the sharp bound is
equal to zero.
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THEOREM 4.1. Let g(f) be (p+1)-times differentiable over 6. Let
9(X,, -+, X,) be an unbiased estimator of g(6). If m=2 and for a fized
6,, the conditions (A.4.1) to (A.4.8) hold, then,

inf  V,(§)=0.

¢: unbiased

Proor. From the unbiasedness condition we obtain
(4.2) S" 6. (O)hy(2)dp,=g(6) for all 0¢eB.

First we assume that ¢,(f) is given, then under (A.4.1) to (A.4.7) we
have by Lemma 3.1

b0 .
o, 0@ 2)—4.(6)} So(y|2)d g,
a4(%.
=(g5°(60), - + +» $5°(00)) A7 ($°(00), - - - 652 (60))
=, (6,]2) (say),
where ¢{?(0) is the i-th order derivative of ¢,(d) with respect to ¢ and
4 is a kxk matrix whose elements are

4.3 inf
@y it

= m{:—;mylz)} (- fuwldldu,

From (4.3) it follows that for any >0 there exists g,(y, z) such that
RO
(4.4) Sw) 0., 0 f.@|2dp,=40) forall 6¢8,

@8 | 1w, A= 4.0 <l e
Since by (4.2)
110 0w 2.1 he My dn=g(0)
for all 6 €8, it follows from (4.5) that
a 0,00
(4.6) L3 0, )= 8.0 f | D@ B,
<S" 0, (802 ha(2)dpts e .

By the condition (A.4.8)
(0,|2)=0 for a.a. z[p].
From (4.6) we obtain
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@7 e 0w D=0l Mg dpn<e
Putting §.(xy,- - -, 2,)=§.(y, 2), we have by (4.4) and (4.7)
E,(§.)=9(9) for all 0eb,
Va(8)<e.
Letting ¢—0 we obtain
inf V,(9)=0.

¢: unbiased

Thus we complete the proof.

Now we shall find a function ¢,(0) satisfying the condition (A.4.8)
when 6=R!, g(6)=0 and p, is a Lebesgue measure. Without loss of
generality, we put 6,=0. We define

Msgn 0|6+ (z—c)*
he(2){(d—2)***+ |02 (z—c)**1}

(4.8) ¢.(0)=
where M is a constant and k is a positive integer. Then we have

d _ d sg.n 0|0|k+2(z_c)k
Sc¢'(0)h’(z)dz_MSc @—2) "+ |0 (z—c)* " z

oo k
sgn 0|01k+2s w

M —_—au
d—ec ° 1+wlk+2uk+2

(after transformation u= ;_:>

* 'v“d MK

M =
145+ d—c

- 005
g Sem 016l

6,

where K= S” —Ldv is a constant. If we put M=(d—c)/K, then
0 1+,vk+l

S" () ho(2)dz=0 .

And it is easily seen that
$,(0)=0 for aa. z,
¢2(0)=0 for aa. z (i=1,---,k).

Thus it is shown that ¢,(4) given by (4.8) satisfies the condition (A.4.8).

We consider the estimation on the location parameter 6. Let X,
and X, be independently and identically distributed with a density func-
tion f(z, 6) of the form f(x—@) which satisfies the following:
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Sf(x)>0 for a<z<b,
S(x)=0 for z<a, z2b,

and lim f(x)>0, lim f(x)>0 and f(x) is continuously differentiable in
T—b—-0

x—a+0

the open interval (a,b). We define
Y=2(X4X), Z=1(X-X).

Then if the conditions (A.4.1) to (A.4.8) are assumed, we have
inf Vv, (0)=0.

é : unbiased
Note that Z is an ancillary statistic, but that (Y, Z) is not sufficient
unless f(x) is constant for a<z<b.

5. A second type approach to obtain the lower bound for
the variance of unbiased estimators

Suppose that (X, Y) is a pair of real random variables according
to a joint density function f(x, ¥, 6) (with respect to the Lebesgue meas-
ure pg) which has the product set (0, a(4)) (0, b(6)) of two open inter-
vals as its support A(#), where a(f) is a monotone increasing function
and b(#) is a monotone decreasing function. We assume the condition

(A.5.1) inf f(x,y,0)>0.

(z,y) € A(0)

Let the marginal density functions of X and Y be fi(z,6) and f,(y, 0)
with respect to the Lebesgue measures g, and p,, respectively. We
further make the following assumption :
(A.5.2) The density functions fi(x,6) and f,(y, ) are continuously
differentiable in ¢ and satisfy the conditions (A.3.5), (A.3.6) and (A.3.7)
for k=1 when f(x, 6) and f,(y, 6) are substituted instead of f(x, §) in
them.

In the following theorem we shall show that the sharp bound is
equal to zero.

THEOREM 5.1. Let &=R!'. Suppose that X and Y are random vari-
ables with a joint density function f(z,y,0) (with respect to a o-finite
measure p) satisfying (A.5.1) and (A.5.2) for a fizxed 6,. Let g(6) be
continuously differentiable over 6. Let ((z,y) be an unbiased estimator
of 9(6). Then

inf  V,(§)=0.

¢: unbiased
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PrOOF. We first define

9, y)=9(6,) for (x,y)€ A(6).

In order to extend g(x, y) for (x,y) outside A(f,) using the unbiased-
ness condition, we consider unbiased estimators g,(x) and §.(y) of g(9)
with respect to fi(z, 6) and f,(y, 6), respectively, such that g,(x)=g(6,)
for 0<z<a(6,) and §,(y)=g(6,) for 0<y<b(b,). For 6>4,, i.e., a(f)=
a(d,) we put
a(l,)

m(©)=g00) | f.(@, Odp,
and also for 6<4,, i.e., b(6)=b(0,)

‘ b6y

m(0)=900) | £, 0)ds, -

Since §,(X) and §,(Y) are unbiased estimator of g(d), it follows that

a(e)
S“)ﬁ,(x)fl(a;, 0)dp.—g(0)—hi(6) for all  026,,

ChY
b(0)
| 0, 0 =0(0)—ha(®)  for all 058,

Since the supports of the density functions f;(x, ) and f;(y, ) are open
intervals (0, a(6)) and (0, b(9)), respectively, it follows from (A.5.1) that

0< lim f,(z, )=, (6) (say),
z—a(0)—-0
(5.2)
0< lim f(y,0).

y—b(0)-0
Differentiating both sides of (5.1) we have by (A.5.2)
a(

63 5O+ 1@ he 0ldn=gO-1O),

for all 6=6,. Since the equation (5.3) is of Volterra’s second type, it
follows that the solution §,(x) exists for all z=a(4,). If § (x) satisfies
(5.8), then it also satisfies (5.1) since g(f))=h,(6,). Similarly we can
construct the unbiased estimator §,(y) for all y=b(4,). We define an
estimator

9(6,) for 0<z<a(l,), 0<y<b(by),
(5.4) a(x, ¥)=4 §:(x) for a(f) =z, 0<y<b(8,),
9: () for 0<z<a(by), b(b)=y .

Then §(X,Y) is an unbiased estimator of g(d) with variance 0 at 6=6,.
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Indeed, we have from (5.1) and (5.4)

E,[9(X, Y)]= Sm) Sa(o") S b(0) Sa(v)

, 906)f(@, y, O)dp+ o 0:(@)f(x, y, 6)dp

0 0

a8 a®
=000 | fila, 0+ {7 (@il O)dps
alf
for all 6=6,. Similarly we have that E,[§(X, Y)]=g(0) for all 4<6,.
Hence we see that §(X, Y) is an unbiased estimator of g(6). We also
have, for all =46,

. a(fy) a(8) g
Voo X, 1)=¢0) | £, 0.~ 3@, 0dp—g(0)
alby.
When 6=6,, we obtain
Ve (0(X, Y))=0.
Thus we complete the proof.

We can give the following example.

Example 5.1. Let X,---, X, and Y,,---,Y, be independently and
identically distributed random variables with the uniform distributions
U, 6) and U(0,1/6), respectively. Put

T,=max X, , T;=maxY,.
13isn 15isn

Then the unbiased estimator 4(T,, T;) of § with variance 0 at 6=1 is
given by

él(tl) fOl' létly 0<t2<1:
(5.5) Oty t)=1 6;(t) for 1=t 0<t<1,
1 for t<1, <1,

where

bity=(1+1)e  for 1z,
By (t) = <1—-:;>t2 for  1<t,.
Indeed, we can easily see that the estimator 4(T,, T;) is unbiased.

We also have, for 0<6<1

(5.6) V,(@(T, Ty)= {1—%“:%} -6 .

We also have, for =1
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(5.7) Vo@(Ts T)={1—- 8t gy
mn—2)
From (5.6) and (5.7), we obtain
Vi(6(T,, Ty))=0.

Thus we see that the unbiased estimator 4(T;, T;) given by (5.5) with
variance 0 at 4=1.

As a further case of this situation, let X and Y be independent
real random variables according to density functions (1/6)f(x/6) and
6f(0y) (with respect to the Lebesgue measure x) with a positive valued
parameter 6, respectively, which satisfy the following:

(A.5.3) f(x)>0 for o<z<1,
f(x)=0 otherwise,

and f(x) is (p+1)-times continuously differentiable in the open interval
(0,1) and for each 1=0,1,---,p

f(i)(x)

0< lim A—ay

2-0+0

M|<oo ,  0<lim
xPt

z—1-0

< oo

By Theorem 4.1 we have the following:

THEOREM 5.2. Let g(6) be an estimable function which is (p+1)-
times differentiable over R'. Let §(X,Y) be an unbiased estimator of
9(0). If the conditions (A.5.3) and (A.4.8) on p,(x|t) hold, then

inf  V,(9)=0,

¢: unbiased

where p,(x|t) denotes the conditional density function of X given XY =t.

PrROOF. Letting T=XY, we have the conditional density function
py(x|t) of X given T=t:

Le(z)p(0t
5.8 z|t)= ‘if<;_)f<&) for ft<x<0,
69 nielo=y |, oG ()

0 otherwise ,

for almost all t[g]. Since for §=1 and almost all ¢ [¢]

pl(xm:f%f(x)f(%) for  t<o<l,

0 otherwise,
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we obtain from (5.8)

p,(xlt):%-pl(-‘g-lt> for all 0, a.a. t [g]

where
_ 1 1 t -1
=({, 3 @7 (5)ds)
Putting
fif<-§-> for t<e<l,
gt(x)z v
0 otherwise,
for almost all ¢ [x], we have
(5.9) n|)=rf(®)g.(x), a.a. ¢ [g],

hence the same conditions on p,(z|t) as (A.4.1) and (A.4.2) hold.

we have by (A.5.3) and (5.9)

lim py(2|t)=f(¢t+0)g.(t+0)=" F¢+0)f(1+0)=0,,
5.10
10 lim p,(2|t)=f(1—0)g.(1—0)=0

for almost all ¢ [¢]. By the Leibniz’s formula, we obtain

G1)  ORElY) ( 7o @@

oxt

HMG uM

=315 ) r@er@ .,  as tla.
By (A.5.3) we have for 1=1,--.,p—1 and a.a. t [g]

(5.12) lim M—-O lim 2P (x[?) =¢,#0

z—1-0 oxt 2-1-0 0x?

where ¢, is finite. Since

@)= 3 (-1y 511 L p( L),

j+1 awj—( x

it follows by (A.5.8) and (5.11) that for almost all ¢ [g],

lim 'p(x]t) =0

Jim =% (i=1,---,p-1),

(5.13)
lim _apé(& D,#0,

z-t+0

Indeed,
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where D, is finite. It is seen by (5.9), (5.10), (5.12) and (5.13) that

the same condition on p,(z|t) as (A.4.2) holds.
For i=1,---,[p/2]

A nein)

0<S aw‘—cla;<oo s a.a. t[p]
¢ pue]Y)
and
! {i=[p2’/’2]+l c,-—a—a;Tpl(xlt)}z
S: o@D dz , a.a. t[g]
is infinite unless ¢y41=--+=c,, wWhere [s] denotes the largest integer

less than or equal to s, since when x—0+40 or x—¢t—0 the numerator
of the integrand approaches to a polynomial in # or t—x of the degree
p—* if ¢.+#0 and ¢.,,=:.-=¢,=0 and the denominator tends to that
of the degree p. Hence the same condition on p,(x|t) as (A.4.4) holds
for k=[p/2]. And also from (A.5.1) it is seen that when £—0+0 or
z—t—0, {(2*/0x*)p,(x|t)}/ P, (z|t) (:=0, 1,- - -, k) approaches to polynomials
of different degrees, hence they are linearly independent. Putting

p(x)= sup p,(z'|?)
2|2 -z <e

for appropriate ¢>0, the same conditions on p,(x|t) as (A.4.5) to (A.4.7)
hold. By Theorem 4.1 we obtain the conclusion of Theorem 5.2.

When ¢(6)=60, Example 5.1 can be also an example of Theorem 5.2.
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