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Summary

The maximum likelihood (ML) estimator and its modification in the
linear functional relationship model with incidental parameters are shown
to be third-order asymptotically efficient among a class of almost median-
unbiased and almost mean-unbiased estimators, respectively, in the large
sample sense. This means that the limited information maximum likeli-
hood (LIML) estimator in the simultaneous equation system is third-
order asymptotically efficient when the number of excluded exogenous
variables in a particular structural equation is growing along with the
sample size. It implies that the LIML estimator has an optimum prop-
erty when the system of structural equations is large.

1. Introduction

The concept of asymptotic higher order efficiency of estimation has
been recently developed by several statisticians. (Ghosh et al. [10],
Pfanzagle and Wefelmeyer [17], and Akahira and Takeuchi [1], for in-
stance.) According to this theory, the maximum likelihood (ML) esti-
mator and the Bayesian estimator with proper priors have third-order
asymptotic efficiency under some regularity conditions. This means that
given an estimator we can always construct a modified ML estimator
which has the same asymptotic bias and smaller asymptotic loss than
the estimator to be compared in the regular case. The purpose of the
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present paper is to show that the ML estimator itself has a third-order
optimum property among median-unbiased estimators in a linear func-
tional relationship model or the errors-in-variable model, which is a
well-known irregular case. We also show that a modification of the
ML estimator has a third-order optimum property among almost mean-
unbiased estimators.

Because the number of parameters increases together with the
sample size (denoted by N) in linear functional relationship models,
we cannot necessarily apply general theorems in the regular asymptot-
ic theory to these statistical models. In fact, the least squares (LS)
estimator is inconsistent while the ML estimator is consistent but does
not attain the Cramer-Rao lower bound in this case. However, the
ML estimator attains the lower bound of asymptotic variance, which
is larger than the Crimer-Rao lower bound, among a certain class of
consistent estimators (see Theorem 3.1 in Section 3). Therefore, fur-
ther comparison of estimators should be made in terms of higher order
terms in the asymptotic expansion of their distribution functions.

Anderson [3] first shed some light on connections between the esti-
mation problem of linear functional relationships and that of structural
equation in the simultaneous equation system in econometrics. The ML
estimator of the slope in the linear functional relationship is mathe-
matically equivalent to the limited information maximum likelihood
(LIML) estimator of a structural coefficient when the covariance matrix
of the reduced form is known in the simultaneous equation system, and
the LS estimator in the former is equivalent to the two-stage least
squares (TSLS) estimator in the latter. Further, Anderson [4] has
shown that the parameter sequence in which the noncentrality param-
eter (or the spread of incidental parameters) increases while the sample
size N stays fixed in the linear functional relationship model corresponds
to the “large sample” asymptotic theory developed in econometrics.
In the large sample asymptotic theory in econometrics, the LIML and
TSLS estimators are best asymptotically normal (BAN) estimators,
namely, these estimators are consistent and the estimators normalized
by the square root of the sample size T (not N) have the same limit-
ing joint normal distribution with the covariance of inverse of the
standardized Fisher information matrix. Here we should distinguish
the sample size T in the simultaneous equation system from the sample
size N in the linear functional relationship model. Since two BAN
estimators are available, several modifications of the LIML and TSLS
estimators have been proposed in hoping that they may improve BAN
estimators in some sense. Anderson, Kunitomo and Morimune [6] made
a systematic comparison of these efforts in the regular asymptotic theory
in econometrics. Moreover, Takeuchi and Morimune [19] has shown
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that the LIML estimator has a third-order optimum property in this
framework where N is fixed and the problem of incidental parameters
does not arise.

On the other hand, Kunitomo [11] argued that the asymptotic theory
in which both the noncentrality (or the spread of incidental parameters)
and the sample size N (not T) increase is more appropriate in linear
functional relationship models. Anderson [4] has shown that the sample
size N minus one is the number of excluded exogenous variables in the
structural equation of interest in the simultaneous equation system,
say, K;. (Although Anderson [3] uses two endogenous variables case,
his arguments hold in the general case. See Kunitomo [18], for in-
stance.) Recent macro-econometric models are more or less large in
their size and hence K, is fairly large even if there are only two
endogenous variables in a particular structural equation. The above
parameter sequence can be interpreted as a new asymptotic theory,
called the large-K, asymptotics, for large econometric models (Kunitomo
[12)).

As K, (or N—1) increases along with the sample size T, the LIML
estimator is consistent and asymptotically efficient while both the TSLS
and the ordinary least squares (OLS) estimators are inconsistent under
appropriate conditions. Furthermore, the modifications of the LIML
estimator by Fuller [9] and Morimune and Kunitomo [16] are shown
to improve the LIML estimator in terms of the asymptotic mean squared
error, which is defined by the mean squared error of the asymptotic
expansion of their distributions. Hence there has been still some con-
fusion on the higher order asymptotic optimality of estimator in this
situation. Hopefully this paper will clarify this ambiguity. The results
obtained in Section 2 imply that the LIML estimator is third-order ef-
ficient among a class of almost median-unbiased estimators and a modi-
fication of the LIML estimator is third-order asymptotically efficient
among a class of almost mean-unbiased estimators. Thus, the LIML
estimation method gives the best estimator if we adjust the asymptotic
bias according to our choice of criterion: median-unbiasedness or mean-
unbiasedness, etc.

One important approach studied in econometrics in the past is small
sample theory. Anderson and Sawa [5] and Anderson, Kunitomo and
Sawa [6] evaluated the exact distribution functions of the TSLS and
LIML estimators, respectively, with a systematic choice of the nuis-
ance key parameters in the simultaneous equation system. The most
important finding in their studies is that the TSLS estimator is badly
biased while the distribution of the LIML estimator is centered at the
true parameter value when K, (or N—1) is large. In this respect, the
results reported in Sections 2 and 3 give some theoretical support to
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their findings.

We shall present the model, the assumptions and the statement
of main theorems in Section 2. A general model and some implications
of our results in econometrics will be discussed in Section 3. Proofs
of theorems are given in Section 4.

2. Main results

Suppose that (z,, ¥,,) is an observation from a bivariate normal
distribution with mean (g, »,), the covariance matrix ¥ for g=1,---, M
(M=1), h=1,---, N (N>1) and that the observations are independent.
In this notation M is the number of replications and N is the sample
size. Incidental parameters (y,, »,) are assumed to satisfy a linear func-
tional relationship:

(2-1) D,f‘——‘d-*-ﬂ[l,, ’ h=1,' ey N.

The angle 6 between the line (2.1) and the g,-axis may replace the
slope coefficient by g=tan . It will be convenient to write

@2) o) =(6)+ ()
Yon Y Vgn

where u,, and v,, are normally distributed random variables with means
Oy Oy
. 12 O3
with the linear functional relationship (2.1) without replication (M=1)
and the covariance matrix Y =¢*I,, where ¢* is the unknown variance
parameter. Alternatively, we may assume Y =¢°2, where £ is known.
This model can be reduced to the above case by making a transforma-
tion of (2.2). If X is unknown completely, it is well-known that the
unknown parameters of the model are not identified except the case of
replicated observations (M >1). See Anderson [4] for this issue. In
the next section we shall deal with more general models (M >1) and
discuss their relations with the simultaneous equation system in econo-
metrics.

We are particularly interested in estimating the slope coefficient
or its angle ¢ with p-axis in (2.1). The estimator of « in any method

zero and covariance matrix ¥ =( ) In this section we first deal

A A N
in this paper is a=%—j%, where B is an estimator of 8, Z=(1/N) X} =,
h=1
and 7=(1/N) f} Y». We denote that x,=z, and y,=y,. in this case.
h=1

Any estimator of the angle parameter 6 is defined by f=tan 8 (|6|=<r/2)
where 5 is an estimator of the slope coefficient 8. Other notations used
here are the standardized estimator é=2(§—pg)/(1+4") for any estimator
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of 8 and the noncentrality parameter

23) #=LE8) S5 Gy,

N
where z=(1/N) 3} #,. The parameter a* may be interpreted as a meas-
‘u h=1

ure of the spread of incidental parameters (g, - -, ¢y) about their means.
The assumption we shall make here to derive the asymptotic expan-
sions of distributions of estimators is the following.

AssuMPTION A. There exists a finite positive number p such that
N
E(yh——ﬁ)’/(no’)=p+0(n") and 6=(1+p5)p, where n=N—1.

Assumption A means that the noncentrality parameter (or the spread
of incidental parameters) increases with the same rate as the sample
size N. To avoid complexity of expressions, i* will be used instead of
N since 2? is replaceable with #d under Assumption A in the following
analysis. It is possible to extend our results in this section to alter-
native parameter sequences instead of Assumption A, which will be
discussed in Section 3.

Define a class of estimators of 8 by

2.4) B=8(8,0r 8y sn)+% D(Sy» Syer 822)

where

e Pl T L
Sy 8y M A=L\Y—Y/ \Yp—Y ’
where ¢ is four times continuously differentiable, ¢ is twice continu-
ously differentiable, and both functions are independent of N. We as-
sume that all of these derivatives evaluated at true parameter values
are bounded. This class is sometimes called the extended regular esti-
mators (see Akahira and Takeuchi [1]). It includes the ML, the least
squares (LS), and the generalized least squares (GLS) estimators, and
their modifications.

Let also define the k-th order asymptotic median-unbiased (AMDU)
estimator by

lim sup n®-v2 Pr (ﬂS,B)—— =lim sup n*-"2|Pr (BZB)—-— =0,

n—oo BeU, n—eo BEU,
where U. is a neighborhood |8—B,|<e for some ¢>0 and any §,.

THEOREM 2.1. For all £,20 and £,=0,
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lim n(Pr {—&, <V Bur— B <&} —Pr {—&,<Vn (B—B)=&:) =0,

n—co

where ,@ is any third-order AMDU estimator and By, is given by

(2.5) By =S8zt (8y—852) +485)"
28,y

COROLLARY 2.1. The ML estimator has a third-order optimum prop-
erty among AMDU estimators with respect to any bounded bowl-shaped
loss fumction L,(B, B)=h(n*(8—B)) whose minimum value is zero at f=
B and which increases with |f—B).

We also consider the class of %k-th order asymptotic mean-unbiased
(AMNU) estimator by

lim sup n*-2| AM,, (8—pB)|=0,

n—o peU,

where AM, () stands for the expectation operator with respect to the
Edgeworth expansion of the distribution function of j.

THEOREM 2.2. For all £,20 and §,=0,
lim n(Pr {—&,<vn (B*—p) <&} —Pr{—&,<vVn (f—P=&) 20,

n—oo

where B is any third-order AMNU estimator. B* is given by

Py 238
2.6 *—= zy
(2-6) N (P WP

where né=1+1/(l,—1) and I, (i=1, 2) are the smaller and larger char-
acteristic roots of matrix S.

COROLLARY 2.2. The estimator B* has a third-order optimum prop-
erty among AMNU estimators with respect to any bounded bowl-shaped
loss fumction L,(vn (B—B)).

Turning to the estimation of the angle parameter §, we obtain the
following result.

THEOREM 2.3. For all £,20 and £,=0,
lim n(Pr {—$1<1/_7;(éuL—0)§$2}_Pr{—51<M(‘§"‘0)§52})20 ’

Nn—0

where § is any third-order AMDU or AMNU estimator.

COROLLARY 2.3. The ML estimator of the angle has a third-order
optimum property among third-order AMDU and AMNU estimators with
respect to any bounded bowl-shaped loss function L.(vn (8 —0)).
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3. Asymptotic theories in linear functional relationship models and
simultaneous equation system in econometrics

We now consider the linear functional relationship model (2.2) with
replications (M >1) and an arbitrary covariance matrix X. In this case
the log-likelihood function log L(-) times —2 is proportional to

sl

(o)) o]
gy [f) g3

where we write 3= (rgfaz w;,” 2). From the log-likelihood function (3.1),
2

the information matrix for (8, @, gy, -, py) is

S (e () (—2)

M
(3.2) 1—1%a? (:; 1) <ﬁ—7%:'> Iy<ﬁz+%_2‘f'§:—>

3.1) MN log [sia;(1—79)]+

Then the partial information for 8 is given by

M E (po— /7)2 .

3.3 I(B)=
©.3) &)= (018 —2B01+03) =1

The noncentrality parameter i* may be defined by (o8 — 2801+ 022)*1(8)/
|Z| in the general case. Here we note that the partial information for
B when X is unknown is the same as (3.3) because 9*log L/00c;;=
0*log L/oada,,= 0" log L/op,90,,=0 for ¢, j=1,2 and k=1,---, N.

Let (%, @n)’=(1/M);1:(x,n, Yn) and (%, y)'=(1/N)n§‘,=l(Eh, 7). Then

the estimator of 8 is based on two sum of squares:

3.4) H=M3 (‘”"‘”) (“"‘”) G=3 3 (Fo "B (T E),
h=1 \Yp—Y/ \Yn— 0=12=1 \Yon—Yn/ \Yon—Yn

where the degrees of freedom of H and G are N—1=n and (M—1)N,
respectively. When M=1, H is reduced to =S in Section 2. In this
case we assumed that ¥ is proportional to the identity matrix for iden-
tification of the model. When M>1, we have some extra degrees of
freedom to estimate the covariance matrix ¥ by G/(N(M—1)). The
ML estimator of 8 for M>1 corresponds to the characteristic vector
(8, —1)" associated with the smaller root of
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1 1
3.5 —H-l——__G{=0.
35) n (M-1)N
Let a structural equation in time period ¢ in a system of simul-
taneous equations be

Ky
(3.6) yzc—_—ﬁyn'i“?:u‘l Y%+ Uy t=1,...,T,

where two endogenous variables (¥, %) and K, exogenous variables z,,
are appeared in this structural equation. In the simultaneous equation
system there are many (at least two) endogenous variables and exoge-
nous variables appeared in other structural equations. Anderson [3]
and [4] clarified the relation between the linear functional relationship
model with replications and the simultaneous equation system. As he
pointed out that mathematically there is a one-to-one correspondence
between two models with different terminologies. In the present nota-
tions, » (=N—1) corresponds to K,, which is the number of excluded
exogenous variables in the particular structural equation (8.6). The
degrees of freedom (M—1)(n+1) correspond to q=T—K, where T is
the sample size and K is the total number of exogenous variables in
the simultaneous equation system. We note that K=K, + K, and K, is
the number of included exogenous variables in the particular structural
equation (3.6). The partial information I(8) in (8.8) corresponds to the
noncentrality parameter for (3.6) in the system. Also the maximum
likelihood (ML) estimator of 8 corresponds to the limited information
maximum likelihood (LIML) estimator of the coefficient parameter 8 of
an endogenous variable for (3.6) in the simultaneous equation system.
We omit the details of these derivations since Anderson [4] discussed
and investigated these relations in the more general framework.

From the above consideration, we obtain the next result by using
arguments similar to Lemma 4.1 in Section 4.

THEOREM 3.1. Let an estimator of B be f=¢(H|n, G/(n+1)(M—1))),
where ¢ 18 continuously differentiable.

(i) If m s fized and I(B) goes to imfinity, or equivalently n<I(B),
then

AM, (VT (B(B—pz1,

and the equality holds for the ML estimator.
(ii) If both m and I(B) go to infinity while their ratio goes to a
constant, then

AM, (vT (B)(ﬁ—ﬂ)}”zl+%
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for gym, and
A 2
AM, (VT (B)(ﬂ—ﬁ)}’zl+—;—<1+—’;—)

for q=0(n), where v*=1lim 2*/q. The equality holds for the ML estimator.
g—oo

@iii) If I(B) is fizxed and n goes to infinity, or alternatively I(B)<n,
then there does mot exist any comsistent estimator of B.

Some comments on this result will be helpfull. Takeuchi [18] proved
(ii) assuming that ¥ is known to proportional to the identity matrix
when M=1. In the case of (i), which corresponds to the usual large
sample asymptotic theory in econometrics, the ML estimator apparently
attains the Cramer-Rao lower bound. However, the regular asymptotic
properties of the ML estimator such as the Cramer-Rao lower bound
cannot be applied to the cases of (ii) and (iii) since the number of in-
cidental parameters increases along with the sample size N in the linear
functional relationship and T in the simultaneous equation system. For
the parameter sequence of (ii), which Kunitomo [11] and Morimune and
Kunitomo [16] investigated assuming a known X with M=1, the ML
estimator attains a possible lower bound which is larger than the in-
formation quantity. For the parameter sequence of (iii), consistent
estimator cannot be constructed since the number of incidental param-
eters grows too fast to give enough information for estimating 8. Hence
the ML estimator loses even consistency in this situation. The two-
stage least squares (TSLS) estimator commonly used in econometric
applications, which corresponds to the least squares estimator in the
linear functional relationship model (2.1)-(2.2), is inconsistent except
the case (i). In the simultaneous equation system there can be large
number of exogenous variables even if there are only two endogenous
variables and small number (K,) of included exogenous variables in the
particular structural equation under consideration (3.6). This (large
number of K, for each structural equation in the system) characterizes
recent macro-econometric models. Kunitomo [12] discussed possible in-
terpretations of this large K, asymptotic theory. If any of two endo-
genous variables appears in other structural equations, our interpreta-
tion in this section can be justified. We omit the details of its discussion
in order to save space. Kunitomo [12] also gives a general result,
which is similar to Theorem 3.1, when there are arbitrary number of
endogenous and exogenous variables in the simultaneous equation system.

So far we discussed the first-order efficiency of the ML and LIML
estimators in this section. Further, the third-order asymptotic opti-
mality of the ML and LIML estimators can be proven with some minor
modifications of the proof in Section 4 for alternative parameter se-
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quences we discussed. In the more general case where the parameter
of interest is a vector or matrix, which may correspond to some sub-
systems of the simultaneous equation system, the Edgeworth expansion
of distribution of estimator becomes very complicated and our method
cannot be applied to directly. However, I believe that similar results
can be obtainable.

4. Proofs of theorems

Measuring all #;, %, and g, from their means, we construct the fol-
lowing vector: x'=(2y,- -+, 2)P, Yy'=(¥s,- -+, yx)P and p=(p,-- -, py) P,
where P=1Iy—(1/N)ee’ and e¢'=(1,---,1). Since there exists an NxN
orthogonal matrix R such that R(1+ 8" p/o=(4,0,---,0) and the N-th
row is (1/N)e’. We define N (=n+1) vectors

u*=RP(x+,By)/(0(1+ﬂz)l/2)=(1: 0:' ] 0)'+(u1r' sy Upy 0)’ ’
U*ZRP(_.Bx+y)/(“(1+ﬂz)1/2)=(’Uh' <0y U 0),

where E(u})=E(v¥)=Eufu})=E@}v)=Euv)=0 (i+7) and E(u}*)=
E@f)=1 (3, j=1,---,n). Then vectors x and y can be written in terms
of u* and v* as x=oR(u*—pv*)/(1+ 8" and y=oR(Bu*+v*)/(1+ "2
Defining s,,=u*'u*, s,,=v*'v* and s,,=u*'v*, we have

s=Q(> )@, @=o(} TF)la+s).
Suo  Sw B 1

In the following we shall derive formal asymptotic expansions of the
distribution functions of estimators in two lemmas. The discussion of
validity of formal expansions is omitted to save space, but it can be
obtained by following arguments given by Anderson [2] and Fujikoshi
et al. [8]. The next lemma, which plays a key role in later develop-
ment, is similar to Theorem 3 in Morimune and Kunitomo [16]. We
note that in their derivation the asymptotic variance formula (A.8)
can be rewritten as AV(1§)=2((1+,82)¢1—;9/p)2+1/p’+(1+ﬂ”)/p, which is
minimized when the first part is zero.

LEMMA 4.1. The necessary and sufficient condition for am estimator
being efficient among consistent estimators under Assumption A is

= _g=B = (1-5)
(41) ¢1— ¢s— 3 ’ ¢2 3 ’

where ¢,=0¢[0h; (1=1, 2, 3) evaluated at h,=s,=1+p, hy=s,,=Bp and
h8=-szz=1+p'

LEMMA 4.2. Any efficient estimator of B can be expressed im the
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canonical form :

4.2) yn (¢—ﬁ)=m+—}rm+%m+m ,

W,
where U, (1=0, 1, 2) are given by (4.4), (4.5) and (4.6), and R, is a re-
mainder term of o,(n7').
Proor. First, we define random variables y,"{=(§‘_. u?—n) / vn,
i=2

N

N 1/2 N

Y= u,'v,/ (;} uf) and y;';:(Z‘, v:—yf,-—n>/«/n. Then we shall ex-
1=32 =2 i=3

pand the distributions of estimators by Taylor’s theorem in the set

J.={ly%|<2log n (1=1, 2), |y%l|<2(log n)"?, |u,|<2(log n)"?
and |»|<2(log n)"?} .

Then Pr{J,}=1—0(n"?) (see Anderson [2]). A Taylor expansion of ¢
around B yields
1 3

* p Xk
2” "%:1 ¢Uht h’.f
3

1
+_6? . Lik}:l Pihfhfhi+ R, ,
where h¥=vn (h,—1—Fp), h¥=v1 (hy—Bp), h¥*=+n (hy—1—p), and ¢,,
=32¢/ah¢ah,, ¢,,k=33¢/3h,3hjahk evaluated at h1=1+ﬁzp, hz=ﬁp, h3=1+
p, and R, is a polynomial of degree 3 in k¥, which is O(n~*?) and is
O((log ¥ [¥ 7 )®) uniformly in J,. From (4.1) and (4.3), we have

(43) VR ($—f)=2] diht +

(4.4) U=22=_3w_

We now differentiate (4.1) with respect to 8 and p and rearrange each
term. The restrictions imposed by (4.1) are summarized as

Pu= _Zﬂ‘ﬁu'*‘(l—.‘gz)/aﬁz ’ ¢1s"—‘.'9’?51'1"23/"z ’
Pu=4Fu+28(F—3)/0*,  ¢u=—2F¢u+(58—1)/d*,
$u=p1+28(1—p")/d*.

Substituting these conditions into (4.3) and rearranging each term, the
second term of the right-hand-side of (4.3) becomes

45 U= (1*'2'9’)’ suzi+ BV~ 2,2,4 2,2~ p72+-623)

where Z,=vn (8./n—3—1) and Z,=+vn (8,,/n—1). We further differ-
entiate the conditions above with respect to 8 and p, and then the re-
sulting restrictions are summarized as:
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b= —4F'$11—4ppra— €1+ ¢, (B —3) ,

b =28 b+ B pra—2Bpus + €18+ (38— 1) ,

b= —PB'¢u+ 2 $is— 1 f pu+ A3 —F)

G =168 ¢y + 128 ¢y1o + 6, —30:(B'—68°+1) ,
Pus=—8B'¢y1 — 48 $11a+4F $uis—5¢, f'+ ¢, (9 — 115
P =4F b1+ B pura— 4B fus + 401 B+ 0x(1— 128+ 38") ,
b= —2°¢11+3B'$uis— 3¢,8'+ 30 8(35° 1) ,

where ¢,=2¢,,/p and ¢;=2/3°. Then substituting these conditions into
(4.3) and rearranging each term, the third term of the right-hand-side
of (4.3) becomes

4.6) U,= ﬂ%ﬁl {3(B* 11+ Bbrie+Pus+ 26, 8) Z, Z7 + 3(2B 111+ (1 — ) uss
— 28113+ 2¢,8—38¢,%) 2, Z3 + (1 —48*— 28")p111 — Bz
+ 3813 — 3¢, BN ZE+3(— ¢y +4¢,p) 22 Z)
+ 225 {(—(—BVZ}+Z2Z,—2BZ, 2227, Z, 7y} .

Next we shall present two lemmas which give the asymptotic ex-
pansions of distributions of efficient estimators up to the order O(n™%).
We explicitly use the assumption of normality for their derivations.

LEMMA 4.3. An asymptotic expansion of the distribution of any
third-order AMDU estimator as m and A* imcrease under Assumption A
18 given by

@D Pridse|=po—LLpe+ SO (L(3 1)

+52<2r‘(ﬂ2—1)+—2—(3—%>) —F e +007)

where a=(1+ 5 (o —c:B)-

ProOF. Let Ty=plim ¢(8,,, 8z 822) =91+ Bo, 1 +p). Then from
(4.4), the third-order asymptotic median-unbiasedness requires

(4.8) (1+B=)2¢u—ﬂ;ﬁ’—)-+ T,=0 .

Differentiating this condition with respect to 8 and p, and rearranging
each term, we obtain the conditions:

2= —2BP,+ (1 — ) —2¢, (1 + ") — (1 + )} (28111 + Purz)
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$1=F g1 —cy(1+B) (38+£)+2¢, 8 (1+ )+ (1 + ) (B bu— ) »

where ¢,=0¢/3s,,, ¢;=0¢/08,, and ¢;=0¢/ds,, evaluated at s, =1+ g%,
8,,=pBp and 8,,=1+p. Define T1=ii‘, ¢.h¥. Then from (4.6),
=1

(4.9) T\=Z,(14+){—2¢:8— (B pu+ Ppua+ b))+ Z(1+ B2 {c:(1+ 352)
—(2¢,8+2Bp11+ (1 — B)p11s— 2Bpus)}+ Zs (14 B) {1 — e (1 + B)
+B8(2¢, 8+ B(B*+ 2)pu1 + buus— Bbuss)} -

Let @*=Z,/p, Q*=U,+T, and @=U,+T,, where U, are defined by
(4.4), (4.5) and (4.6). Then using (4.8) and (4.9),

(4.10) p*(l+52>Ql*=zz(z,—zl)+ﬁZ:+(%—ﬁ)(zz—z),

(1) QF=(U+8)( 5 Z—L{Zu(B b+ Bbust st 26,8)+ Z,(2Bhy
(L= B 280+ 268) — BZ BB+ s+ s
~Bus-+-20,8)— 0o L+ 231+ B - (1+ B
+ Z(+8) (41— B+ ) +as(L+BVEt ZiZ(1+B)

X (20— )+ 21+~ (1- )+ 217
— 282,72} —22,7, 7)) .

Now we write 8/t =A(8—B8)/(1+5) =@+ @Q,/2+Q,/2*+ R, where R, is a re-
mainder term of the order o,(n™!). By the Cornish-Fisher expansion of

x* random variables, we have the following canonical representation of
Z; (i=1,2,8):

( 2 9 5 2 )
§ yn—-z— + ui
Z, V2 yu+2vau 1 1
(4.12) Z, |= 2/1:+\/7'U1 +ﬁ V2 YuYu+ U v
Z, fz—yzz 9 3
§<y;2"'4+-§ygz+vf>

( \
Wlf— (¥ —16y,y)
25 W10, [+,

S|~

1
W (¥2—25y2) )
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where each component of u,, v;, %, ¥ and ¥, are mutually independent
standard normal random variables. R; is (1/¥'n)* times a polynomial
of degree 4 or 2 in ¥y, ¥, and ¥, plus a remainder term, which is
o(n?) and is O((log ¥ 7 /¥ n )" in J,. Define a standard normal random
variable as W=(v,4+yyu/v 8 )/r=E(Q,|W), where r=(1+1/3)"*. Then W
is independent of w,, ¥, and ¥y, and z2=(v,/v 3 —yu)/r. Transforming
v, and ¥ by (V3 W+2)/(1+3)"* and (W—+ 3 2)/(143)"?, we obtain

(4.13) EQ|W)=BW*,

@1 BEQIM=2(2+lis)-La-wy-a-pew,

) 1+W?: | a4+ W? < 1> 2, @
4.15) E@|W)= AW B W —-2( 2+ — | WP+ —,
(415)  BQIW)= ot gt 4 W e + 1w @
where the expectation operator is taken in terms of %, v, and 2 in
the whole space, which differs from the expectation in the set J, by
0(27*). Finally by Fourier inversion we find (4.7).

LEMMA 4.4. An asymptotic expamsion of the distribution of any
third-order AMNU estimator as n and 2* increase under Assumption A
18 given by

#16) Pr{Lse)=p0—EED 40+ 2O (1(3 )
2 2 (L o ) — 8
X (21‘(/;2—1)+_;.(3—%)) —pwe‘} +0(Y) .

ProoF. From (4.5), the third-order mean-unbiasedness requires

2
(@.17) -y gu—p(EEEL—2) 10,
Then we differentiate this condition with respect to g8 and p, and re-
arrange each term. The restriction implied by (4.17) is summarized as

¢z=—2ﬁ¢1+%(1—19‘)—-;7—261[*(1+B’)—(1+B’)2(219¢m+¢m)

W= 9B+ B +)+ 2420, LB+ (L B B )
Then substitution of these conditions gives

(418) T=Z(1+8) | —0if-+2 pBL+ BV~ (B -t Bt )|



A THIRD ORDER OPTIMUM PROPERTY OF THE ML ESTIMATOR 589
218 [ 2 (14 36) -2 p(L-+ £ (1+ 86— (20. 8-+ 264
=B 289u)] + 2 [(L+BVTo—Et 2 o814 57

X (1+28)+B(1+B*) (2c.8+ B(Bz+2)¢m+¢uz“¢na)} .

Let also define Q*=U,+T, and Q¥*=U,+T,. Then by the transforma-
tion of W and z as in Lemma 4.3, we have E(Q,)=W and

(4.19) E@|W)=p(W*—1),

@20 B@IW=D(2+3)-La-wy-a+sg)ew,

1
1+9)

+4r‘W’+ﬁ’r‘W‘—2<2+%—)W’+l: ,
T

(4.21) E@QIW)=87(1-2W")+

(1+8W’+%(6+W2)>

where the expectation operator is taken in terms of u,, v, and z in
the whole space, which differs the expectation in the set J, by O(17%).
Finally, the Fourier inversion gives (4.16).

PROOFS OF THEOREMS 2.1, 2.2 AND 2.3. For the estimators Ay,
and B*, the asymptotic expansions of their distributions are given by
Kunitomo [11] and [14], respectively. Then for the ML estimator

A

Pr {elg ' gez} _Pr {slg & gez} =% (e g(6)+Ep(E)) 20,

T T 272

to terms of order n~!, where &, is the standardized . (or A*) and é,
is any standardized third-order AMDU (or ANDU) estimator. The
equality holds if and only if a=0.

For the angle estimator, we use f=tan 6. Putting £=z+pra*/i+
2(8'+1/3)x}[2*+ - -+, we have

Pr {z(é—o)/rsx}=w(e)—"—“;—ﬂ’)gs(a{qsu—zczpmoa*) :

Then the third-order asymptotic median-unbiasedness or mean-unbiased-
ness requires the parenthesis in the right-hand-side is zero. Hence
Theorem 2.3 follows from Theorems 2.1 and 2.2.

PROOFS OF COROLLARIES. We note that

EL,(B, =\, —Pr {7 (-—H)<s)ihy)
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- S"_w (Pr{vn (A— ) syhdh(y) .

The proof follows immediately from this relation.
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