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Summary

It is shown that in linear estimation, both unbiased and biased, all
unique (up to equivalence with respect to risk) locally best estimators
and their limits constitute a complete class.

1. Introduction

Olsen, Seely and Birkes [7], and LaMotte [6] have shown that in
linear estimation, both unbiased and biased, all admissible estimators
constitute a minimal complete class. Moreover, as they shown, any
admissible linear estimator is locally best in something of a canonical
parameter set. LaMotte [6] has presented also a procedure, based on
so called trivial points of the parameter set, by which we can verify,
in a finite number of steps, whether a linear estimator is admissible
or not. However, this procedure is not convenient in practice.

Our plan is as follows. It is easy to show that any unique (up to
equivalence with respect to risk) locally best estimator is admissible.
In particular, any linear estimator being locally best in the relative in-
terior of the canonical parameter set is admissible. Basing on a well-
known necessary condition for admissibility, due to Farrell [1], we shall
show that any admissible linear estimator may be presented as a limit
of estimators being locally best in the relative interior. This fact is
not surprising in the light of some known results in the Wald theory
but it is unattainable, as yet, by the algebraic way, which is actually
prevalent in linear estimation.

Our complete class is included, usually properly, in the set of all
locally best estimators. However, as we shall show by examples, this
class may also not be minimal complete, because some limits of the ad-
missible estimators may be inadmissible.
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2. Notation and initial reduction

In this section the usual vector-matrix notation will be used.
Among others, if A is a matrix, then A/, R(A) and JI(A) denote, re-
spectively, the transpose, the range (column space) and the null space
of A. By &, is denoted the space of all symmetric matrices of size
nxXmn, and by S; the cone of all non-negative definite matrices in S,.
Symbol ||-|| stands for the usual norm in an Euclidean space R", that
is ||z||=2'2, where z is a column of nx1. Moreover the symbol ri(K),
where K is a non-empty set in R", denotes the relative interior of K,
i.e.,

ri(K)={x € K: S(x, e)Naff (K)SK for some ¢>0},

where S(x, ¢) is the open ball in R* centered at x of radius e, while
aff (K) is the minimal affine set including K (see Rockafellar [9]).

In fact, r4(K) is the interior of K relative to aff (K). We note
that the relative interior of any non-empty convex set in R" is non-
empty. Moreover, by the relation S(Az,+(1—2)x;, 1e)=21S(x;, €)+(1—
)z, we get

(2.1) A%+ (1 — )z, € ri(K)
for all =z, €ri(K), 2,€ K and 2€(0,1].

Let Y be a random vector in R" with expectation x and variance-
covariance matrix V, where (¢, V) is an unknown element of a given
but arbitrary set 2 in R*xS;. Consider estimation of a parameter
c'p, ce R*, by estimators of the form d’'Y, where d belongs to a set
D in R*. An estimator d'Y will often be identified by its coefficient
vector d. Our assumptions about the set D will be precised latter (see
the condition (2.6)).

We shall compare different estimators according to their possible
mean squared errors (MSE), where

MSE (d| g, V)=E (d'Y—¢'p)*
=d'(V+ppYd—2d pp'c+c'pp'c .

Olsen, Seely and Birkes [7] and LaMotte [6] noted that the mean
squared error is a linear function of V and pu’. They treated the
pair (V, pp') as a canonical parameter. It will be more convenient for
us to use a slightly modified parameter 6=(6,, 6;), where 6,=V+ up’
and 6,=py’ (see also LaMotte [4]).

Let 8, be the set of all possible values of § when (g, V) runs over
2. Then the risk of an estimator d may be written in the form
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2.2) R0, d)y=d'6,d—2d'6,c+c'6,c , 0eb,.

This risk defines a preordering = on the set D according to: d,zd, if
R(0,d,)<R(6, d;) for all € 8,. Itis clear that this preordering remains
unchanged if we replace 8, by any other set & such that

(2.3) Cone (8)=Cone (8,) ,

where Cone (K) denotes the minimal closed convex cone containing a
set K. We recall that the canonical parameter set used by Olsen,
Seely and Birkes [7] and LaMotte [6] corresponds to the choice &=
Cone (8,). ‘

Throughout this paper 8 will be an arbitrary convex set satisfying
the condition (2.3).

Let G be any maximal element in the set {f,: (6,, 6,) € 8}, in the
sense that R(0,)SR(G) for all (4, 6;) € B, and let k be the rank of G.
We define

(2.4) F=[F,: F},

where the matrices F), of size nxk, and F;, of size n X (n—k), satisfy
the conditions R(F})=R(G), R(Fy)=TUG), F/F,=1I, and F/F,=1I,_,. It
follows that F|F!/ is the orthogonal projector on R(G). It is easy to
check that R(4,d) depends on d only through FF/d. Thus, instead
of D, we only need to consider the set

(2.5) D,={F,F!d: deD}.

We shall assume that D, is a closed convex set in R(G) and that
there exists a non-empty set H in JI(G) such that D may be presented
as the direct sum

(2.6) D=D,®H .

It is easy to verify that for usual, that is unrestrictive, linear estima-
tion both unbiased and biased the condition (2.6) is valid.
We need the following lemmas.

LEMMA 2.1. If 6=(0,, 0,) € ri(6), then R(0,)=R(F}).

LEMMA 2.2. The risk R(0, -) is a convexr function of d € D, for all
0 €8, and strictly convex for 0 € ri(8).

Remark 1. Lemma 2.1 is essentially due to LaMotte [4].
We shall give elementary proofs of these lemmas.

PrOOF OF LEMMA 2.1. Let 0=(6,, 0,) € ri(8). Suppose, by contra-
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diction, that R(6,) is a proper subset R(F;). Then there exists a §=
(@, ;) € ® and a vector z € JI(6,) such that «'8,2>0.

On the other hand, it follows from the conditions 6 € 7i(6) and 9 € 8
by (2.1), that §+21(0—8) € ri(8) for some 1>1. Thus we get (1—2)-
#'8,2>0. This contradicts the condition & € 8, because §, is not non-
negative definite.

PROOF OF LEMMA 2.2. We need to show
ditdy) 1 1
@.7) R(s, t )é S RO, d)+3 R0, dy)
with the strict inequality if 6 € 7i(8) and d,+#d;. Note that
R(o, il_;f_dZ) =71—R(0, dl)+-}R(0, d,)+—;—[d(ﬂ,dz—c'oz(d1+d,)+c’0,c] .

On the other hand, by inequalities ab<(a*+b%/2 and of Cauchy-Schwarz,
we get

d;6,d, < V[0, V30,0, zég(d:oldﬁdwlda

with the strict inequality unless
2.8) di6,d,=d;6,d, and d,=2d, for a positive scalar 2.

The condition (2.8) contradicts at least one of the assumptions 6 € r#(6)
or d,#d,. Now the desired result is evident.

In this way the problem of linear estimation is reduced to a sta-
tistical game (8, D, R) satisfying the assumptions (Al)-(A5) listed in
the next section.

3. A necessary condition for admissibility in a statistical game
with a strictly convex risk

Consider a statistical game (6, D, R), where 6 is the parameter set,
D is the set of the decision rules and R(6, d) is the risk of a rule d ¢ D
with respect to a parameter 6 € 8. In a similar way as in Olsen, Seely
and Birkes ([7], Proposition 3.3), we can prove

LEMMA 3.1. Assume that D is a closed subset of R*, R4, -) is a
continuous function of d € D for all 6 € @ and there exists a 6,€ 8 such
that Lim R(6,,d,)=c0 for any sequence {d,} in D such that lim ||d.||=oco.

—$00 k—oo
Then all admissible rules in the game (0, D, R) constitute a minimal com-
plete class.
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In this section we shall assume that

(Al) 6 is a convex set in R™,

(A2) D is a closed convex set in R",

(A3) R(-,d) is non-negative and continuous for all d € D,

(A4) R(0, -) is convex and continuous for all # € & and strictly convex
for some 0=46,,

(A5) For any scalar C>0 and for any 4 € ri(0) there exists a constant
M=M(C, 6) such that R(6,d)>C providing ||d||>M, d € D.

A very general necessary condition for admissibility has been given
by Farrell ([1], Theorem 3.7). This condition is expressed in terms of
risk functions being relative to some prior distributions. However it
will be more convenient for us to handle the original statistical rules
than their risks. Theorem 3.1 is just an adaptation of the result by
Farrell to purposes of linear estimation.

Denote by r(r,d) the Bayes risk of a rule d € D with respect to
a prior distribution r on 8, i.e.,

(e, d)= So R(9, d)dz(6) .

A rule d, is called Bayes with respect to r (or r-Bayes, for short) if it
minimizes 7(z, d) among all d € D.

THEOREM 3.1. Under the assumptions (Al)-(A5), for any admaissible
rule dy € D there exists a sequence {r,} of prior distributions on 6 and a
corresponding sequence {d.} of decision rules such that:

(i) The expectation E,, of r, exists and belongs to ri(6), k=1,2,---.
(ii) The rule d, is Bayes with respect to ., k=1,2,---.
(iii) The sequence {d,} is convergent in R" and lim d,=d,.

k—oco
PROOF. Suppose a rule d, is admissible. Then, by (A3), it is also
admissible in the game (2, D, R,), where 2=ri(6) and R, is the restric-
tion of R to the set 2xD.

Denote by R the family of all risk functions corresponding to pos-
sible randomized rules in the game (2, D, R,). To prove the theorem
we shall use Farrell ([1], Theorem 3.7) with the set 2 and the family
R defined as above and with the normative function a(6)=1 for all
0 ef. At first we shall verify the assumptions of the Farrell’s theorem.

It is clear that the set 2 is s-compact. We shall show that the
family R is weakly subcompact and sequentially weakly subcompact.

Given a directed index set A consider a sequence {f,, a € A}, where
f.€eR. If lim sup fo(@)=o0c for all 0€f, then the condition f(8)=

lim sup fa(0) is trivially satisfied by arbitrary fe R. Now otherwise,
let
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3.1) lim sup Ja(Bp) < o0 for some 6,¢2.

By essentially completeness of the nonrandomized rules among all rules
in the game (2, D, R)), (see e.g., Ferguson [2], p. 78), to each ac A
corresponds a rule d, € D such that

(3.2) Ry(8,d)<f.(6) forall deQ.

It follows from (3.1) and (3.2), via assumption (A5), that lim sup ||d,||
acAd

<oo. Thus there exists a subsequence {d,, b€ B} of {d,, a € A} such
that limd,=d for some d e D. Therefore, by (3.2) and by continuity
b—B

of R4, -), we get
By(0, d)=lim Ry(6, d,)<lim sup Ey(0, d,)=lim sup £, (6) -
€ acd a€

Thus R is weakly subcompact.
Now let us consider a countable sequence {f,}, where f,e R, k=
1,2,---. The case when liminf f,(f)=oc0 for all 6 € 2 is trivial, so sup-
k—oo

pose that lim inf f,(6,)<oo for some 6, 2. Then, as above, there ex-
k—o0

ists a subsequence {f } of {f;} and a corresponding sequence {d, } in D
such that Ry(0,d,)<f: (0) for all 6 €2 and limd, =d for some d ¢ D.

r—00

The rule d satisfies the condition R,(¢, d)<lim inf f, (¢) for all 4 € 2 and

hence the family R is sequentially weakly subcompact. Thus the as-
sumptions of the theorem by Farrell are met.

This theorem yields that there exists a sequence {r,} of priors on
£ ‘supported on compact subsets F}, k=1, 2,-.., and a sequence {f;} in
R such that f, is Bayes with respect to =, and

{im F(O)=R,(0, d,) for all 6eQ.

Thus, by essentially completeness of nonrandomized rules, there exists
a sequence {d.} in D such that

(3.3) ' lim By (0, di) < Bo (0, o) -

By (A5) this sequence is bounded, and therefore, we can take a con-
vergent subsequence. Without loss of generality assume that limd,=
. Kk~»00

d for some deD. Then by (3.3) and by continuity of R(:,d) we get
R(6, d)=R(8, d) for all ¢ 8.

Suppose d#d,. Then by (A4) the rule d,=(d,+d)/2 is better than
d,. This contradicts the assumption that d, is admissible. Now it re-
mains to prove that the priors ., k=1, 2,- .., satisfy the condition (i),

but it follows from the fact that each r, is supported on a subset F,
of ri(#). This completes the proof.
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4. A complete class in linear estimation

Return to the problem of linear estimation of ¢’ in a general linear
model EY=p, CovY=V, where (g, V)e L. In Section 2 this problem
was reduced to a statistical game (8, D, R) such that the assumptions
(A1)-(A5) were satisfied. These assumptions may be completed by :
(A6) R(16+(1—21)F,d)=1R(,d)+(1—2)R@,d) for all 6,8¢6 and

2¢[0,1].

We shall say that an estimator d, is 6-best for some 6 €6 if R(4,
d)<R(0,d) for all d e D. Similarly, we shall say that d, is locally best
(LB) in 6,, where 6, is a subset of 6, if d, is §-best for some 4 ¢ 8,.
An estimator d, is said to be wumnique locally best (ULB) if it is #-best
for some 6 € & such that all #-best estimators have the same risk.

It follows from the assumptions (A2), (A4) and (A5) that for any
0 € ri(8) there exists a #-best estimator and this estimator is ULB. For
linear unbiased estimation this estimator may be presented explicitly
(see e.g., Stepniak [10]). For linear biased estimation such explicite
form is given in

PROPOSITION 4.1. For linear estimation of c'p in a limear model
EY=p, CovY=V, (g, V)€ 2, with the decision se¢t D=R":
(a) An estimator d'Y 18 0-best for some 0=(0,, 6;) if and only if

(4.1) 01d=026 .

(b) For a given 6=(0,, 0,) € 2, all 0-best estimators have the same risk
af and only if

4.2) R(O)=R(F) ,

where Fy is defined by (2.4).
(¢) An estimator d'Y i3 0-best for some 0=(0,, 0,) satisfying the condi-
tion (4.2) if and only if

by
d=F|-:--
b,

where b=(F/6,F)'F!0,c and b, is an arbitrary vector of size
(n—k)x1.

’

Proor. Condition (a) was shown by LaMotte ([5] and [6]). We note
that to each d € R* corresponds a unique vector b=(b] : b})’, such that
d=Fb. Let us put in (4.1) d=Fb. Then we get

(4-3) 01.F‘1b1=026 .
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The equation (4.3) possesses a unique solution with respect to b, if and
only if R(6,)=R(F}), and if so, then this solution is just b,=(FY4,F))*-
F!0,c. This implies both (c) and sufficiency of (4.2).

In order to show necessity of (4.2) suppose, by contradiction, that
all #-best estimators have the same risk but R(6,) is a proper subset
of R(F;). Then there exists a vector x such that ¢, Fiz=0 but Fix+
0. Consider the estimators d{Y and d'Y, where d,=F}b, and d=F;(b,
+x), while b, is a solution of (4.3). We note that d,d, e R(F)), d+d,
and they both are admissible. On the other hand, by (A4), the esti-
mator (d+d,)/2 is better than d and d, alike. This contradiction com-
pletes the proof.

Now we shall state the main result of this paper.

THEOREM 4.1. For linear estimation of ¢'p in a linear model EY=
g, CovY=V, (g, V)€ R, under a decision set D and a convex set 6 such
that the conditions (2.3) and (2.6) are valid
(a) Any admissible estimator d may be presented as a limit of LB esti-
mators in ri(0).
(b) The class C of all such limits coincides with the minimal closed set
containing all ULB estimators.

ProOOF. Consider a game (6, D, R), where 0 satisfies the condition
(2.3), D satisfies the condition (2.6) and R is defined by (2.2). Then the
assumptions (A1)-(A6) are valid. Thus, by Theorem 3.1, for the proof
of the part (a) we only need to show that any linear estimator being
Bayes with respect to a prior having a finite expectation is locally best.
Really, by the assumption (A6), via Jensen’s inequality, we get r(z, d)
=R(E,, d) for such a prior r and for arbitrary d € D. This implies the
desired condition and completes the proof of (a).

For (b) we notice that the set C is included in the closure of all
ULB estimators as any linear estimator being LB in r#(#) is ULB. On
the other hand, any ULB estimator is a member of C because one is
admissible. This implies the desired coincidence and completes the proof.

5. Examples

Example 1. Linear estimation in the model E Y=41,, Cov Y=4I,,
BeR, ¢>0.

Let us put ={0=(9,, 6.): 6,=«I,+y1,1,, 0,=9y1,1;, x>0, y=0},
where 1, denotes the column of n ones. We note that 6, is always
positive definite. Hence, by Proposition 4.1 (c), the class U of all ULB
estimators for B, is
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U= {d:al,,‘: 0§a<-1—} .
n
On the other hand, our parameter set & may be equivalently replaced
by a two-element set 6,={(I,, 0), (1,1;, 1,1,)}. Thus, by Theorem 2 in
Stepniak [12] any limit of the admissible estimators is admissible, and,
in a consequence, our complete class

C= {d=a1,,: ogag%}

coincides with the minimal complete class.

Example 2. (Klonecki and Zontek [3], p. 49). Quadratic estimation
of the variance component ¢, in the normal linear model

EY=0, Cov Y=alI2+o,[g (1)] , where ¢,>0, 0,20.

This problem reduces to linear estimation of ¢, in the model

}’12 g 0'? 0 0
Z= Ygz 9 EZ: 0’1+0'2 y COV Z=2 0 (0'1+0'z)’ 0 »
Y, Y, 0 0 0 0

and next to the same problem in the model

U= [;',::] ’ EU= [01:_102] ’ Cov U=2|:((’)2 (01-802)’] ’

Let & be the minimal closed convex set including

3 p+l 1 p+1
9={0=0,0 :0=[ P ],0:[ P ] ;0}.
0 o=(01, 0s): 0, o+1 3(p+1) 2 p+1 (p+1) 4

Then

| 3 i 1t
0=10u=0,o :o=[ ],0:[ ] t>1, zo}.
nu= (01, 63): 0, t 3(*+u) = ftu U=

By Proposition 4.1(c) a linear form d'Z is a ULB estimator of ¢, if and
only if

a(t, u . 17 1 2t*4+-8u
d=[(v )}’ where “(t’u)_g‘lo’[o]“m[ 2 ]

for some t=1, v=0 and ve R. Hence in this case our complete class
C is defined as the minimal closed set including
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1 2t 4-3u
2t
v

U={d=d(t, u, v): d=m

’ t_Z_]-y ug(), 'UGR} .

It appears that this complete class is not minimal. In particular

h=lim d(t, 0, 0) = (% 0, 0)'

t—oo

belongs to C but A’'Y=Y?/4 is inadmissible for ¢, because it is dominat-
ed by o,=Y7/3.

Example 8. Linear estimation in the Gauss-Markov model. Con-
sider linear estimation of the parameter g, in the model

EY= [z:] , CovY= E H ,

where g, g, € R. It is known (see Rao [8] and Stepniak [11]) that the
minimal complete class for this problem is defined by

Co={d=(d;, dy)': 0=d,+d;<1 or d=(1, 0)}.
On the other hand the complete class C is defined by
C={d=(d, d;): 0=d,+d,<1}.
Thus C is not minimal complete.

Example 4. Linear unbiased estimation in one-way random model.
Consider linear unbiased estimation of the parameter g in the model

EY=81,, CovY=qI,+a,diag(1,1,, -+, 1,1,),

i
where n=i n;, BER, 6,>0 and ¢,=20. It was shown by Stepniak [12]
that the class of all ULB estimators for this problem is defined by

cU={d-d=<ﬁ‘, 7 )”1[ 1 4.1 1']' pZO}
TP NE 14mp 14mp ™ " 1dmpe ™ TT)

Moreover, by Theorem 4 (c) in Stepniak [12] the limit
d=limd,

p—00

is also admissible. Thus our complete class C=9 U{d} coincides with
the minimal complete class.
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