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Summary

Two sets of modified kernel estimates of a regression function are
proposed : one when a bound on the regression function is known and
the other when nothing of this sort is at hand. Explicit bounds on
the mean square errors of the estimators are obtained. Pointwise as
well as uniform consistency in mean square and consistency in prob-
ability of the estimators are proved. Speed of convergence in each
case is investigated.

1. Introduction

The theory of regression is concerned with the prediction of the
value of a variable, called the response or dependent variable, at a given
value of another (correlated) variable, called the predictor or independ-
ent variable. Prediction is needed in several practical situations. For
example, an agriculturist wants to know the yield of wheat at an
amount of a specified fertilizer, a metrologist wants to forecast weather
several hours ahead on the basis of previous atmospheric measurements
and a physician is interested in determining the weight of a patient in
terms of the number of weeks he or she has been on a diet.

Let us denote the response variable by Y and the predictor vari-
able (also known as regressor variable) by X. Then the regression of
Y on X evaluated at X=x is given by

r(z)=E (Y| X=2) .
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It is well-known that the regression curve r(X) of ¥ on X is the best
predictor of Y in terms of x in the sense that if #X) is any other
predictor of Y, then the average square error incurred due to predic-
tor #X) is not smaller than that incurred due to predictor r(X).

If the joint distribution of the two variables X and Y is known,
then the prediction of Y can be made by computing the conditional
expectation of Y at the desired value of X. Otherwise, the regression
curve r(X) is not directly available to us. In such situations, if obser-
vations (X}, Y3),- -+, (X,, Y,) on (X,Y) are at hand, then some time the
theory of least square methods or that of maximum likelihood methods
can be applied to estimation of 7(x), but this may be done only if the
exact model (the functional form) of the regression curve is known,
and, further, for the use of m.l. methods, the distribution of the errors

¢,=Y,—E(¥,|X)

must also be known.

However, the population of all suitable functional forms (or of the
distributions of errors) is quite often impractically large. Therefore,
no matter how carefully chosen a model is adopted, there is always a
possibility of misspecification. Moreover, even if the exact functional
form of the regression model involving unknown parameters is known
(which is extremely rare), the above methods of least squares and/or
of the maximum likelihood some time does not work at all. This is
especially the case when the model is the mixture of polynomial, ex-
ponential, reciprocal, logarithmic, trigonometric and/or likewise func-
tions of the regressor variables, each involving unknown parameters.

The problems of estimation of a regression curve r when nothing
is known about the functional form of » but the conditional density of
X given Y=y is known to belong to certain class of densities have
been treated by Kale [4], Nadaraya [6], Singh and Tracy [14] and Singh
[16]. Whereas in the first three of these papers, the conditional den-
sity of X given Y=y is normal with mean y and variance one, and
the unconditional distribution function of Y possesses a density, in the
third and the fourth papers the density of X given Y=y is of the form
C(y)u(x)ev* and C(y)u(x)e~*"? respectively and the distribution of ¥ need
not possess a density. However, the methods cited in these works are
too restrictive and may also lead to misspecification of the model, be-
cause the conditional density of X given Y=y is rarely known or may
incorrectly be specified.

The only way of avoiding misspecification of the functional form
of the regression model or of the distributional form of the errors is,
in fact, to assume no specific parametric functional form of the model
or of the distribution of errors, that is to estimate the regression func-
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tion completely nonparametrically. In recent years nonparametric esti-
mation of the regression function » by 7, (defined below) using Rosenblatt
[9]-Parzen [8] type kernel estimates of a density function has drawn
considerable attention. Various asymptotic properties of the estimators
7., known as kernel estimates of a regression function, have been studied
in the literature by a number of authors. For example, Schuster [10]
has proved the asymptotic normality of these estimates and Noda [7]
has proved the pointwise strong consistency. Devroye and Wagner [2]
and Spiegelman and Sacks [21] have proved L? convergence of r, in the

sense that lim E S |7, (%) —r(x)Pdp(x)=0 where u is a probability measure

generated by the r.v. X. However, strong convergence (pointwise or
uniform) and L? convergence concepts differ from the pointwise and/or
uniform mean square consistency concept we shall deal with. More-
over the kernel estimates r, of a regression function based on a sample
(X, Y1), -+, (X, Y,)} on (X, Y) considered in the above and other works
are defined by r,=(h./g,) where

ha(@)=(n2)™ 33 ¥, K(X,~2)}2)
and

0.(2)=(n)™* 33 K(X,—=)}2) ,

with K and 8 being respectively the kernel and the windowwidth
functions. Hence with such an estimate, since the kernel function K
could assume a zero, negative or positive value, there is always a chance
of blowing up the estimate h,/g, itself (or of excessively overestimating
the regression) in practice for any given set of data whenever g, is
near zero. To avoid this problem, we consider in this paper a modi-
fied kernel estimate which is a retraction of the function k,/g, to an
interval [—c¢,, ¢,] with ¢, converging to infinity with certain rate.

In Section 2 we introduce our modified kernel estimate of the re-
gression function. In Section 3 we prove pointwise mean square con-
sistency and deduce from it the weak consistency of our estimates. In
each case the speed of convergence is examined. An explicit bound
for the mean square error, lacking to date in the literature for the
kernel type regression estimates, is also obtained. In Section 4 uni-
form mean square and uniform weak consistencies are proved and their
speeds of convergence are investigated. In Section 5 remarks are made
on the choice of windowwidth function, kernel function and the se-
quence {c,}.

Throughout this paper convergence of a function depending on n
is w.r.t. n—oo. The integrals without showing the limits are over the
whole real line.
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2. Estimators of regression curves

Let f be the joint density of the regressor variable X and the
response variable Y and, let

h(x)=s yf(x,y)dy  and g(w)=S Sz, y)dy .
Then the regression curve of Y on X evaluated at X=z is

(2.1) r(x)=E (YlX:x)=z—((% ) provided g(z)#0.
Our method of estimation of » involves estimation of # and g on the
basis of the random sample {(X;, Y),---, (X;, Y,)} on (X, Y).

Let s be a positive integer and K, be the class of all real valued
Borel measurable bounded functions K such that

[Kway=1, [wK@ay=0 for j=1..-,s-1,
(2.2)
[t IK@ldy<er  and  [WE@)—0 s [yl

Kernels of the type (2.2) have been used in density estimates by Johns
and Van Ryzin [3], and Singh [12], [17], among others. For any given
8, the class K, is quite large. For example, for s=1 and 2, K(y)=
(27) 2 exp (—¥*/2)] (—oo<y< o) or K(y)=(2a)"'I (—a<y<a) for an
a>0 belong to K,. For s=3 and 4, the functions K(y)=(2r)"*[2 exp
(—9/2)—(1/2) exp (—y* /4 (—oo<y< oo)or K(y)=(2r)""*(1/2)(3—¥") exp
(—92)I (—oo<y< ) belong to K,. For any given s, polynomials K(y)
in ¥ on a finite interval (a, b) belonging to K, can be constructed (see
e.g., Singh [18]).

Let 3=4, and =7, be two positive sequences of numbers based
on the sample size » so that max{s,, »,}]—0 as n—oco. Let = be a
point at which we wish to estimate M(x). For a fixed s, let K be a
fixed member of K,. Let

(2.3) h(z)=(n3)" 3" Y,K(Xf—x)
j=1 3

and

@4 d)=(nn) 3 K(E=2).
Jj=1 /]

Let
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A

2.5) o) =42)
g

In the existing literature most of the kernel type estimates of the
regression curve are exactly of the type (2.5). However as noted ear-
lier, g(x) could be zero or near zero at a number of points z for any
given set of data on (X, Y) with a number of symmetric kernels K.
In such situations it is hardly advisable to use 7, as an estimate of r.
To avoid such problems, we propose a modification of 7, in this paper
and study pointwise as well as uniform consistencies of the modified
estimator.

For a positive b, let {a}, stand for —b, a or b according as a < —b,
|a|<b or a>b. Let ¢,=c,(x) be a positive function of n and x which,
for each z, converges to infinity as n— oo (see comments in Section 5
on the choice of ¢,). Our proposed estimator of »(x) is

o=l

However, if we have the knowledge of some function c¢y(x) such that
—c(z)Sr(x)<c(z), our proposed estimator of r(x) would be

r¥(x)= {:;”((—:))} W

A discussion on the choice of ¢,, the bandwidth functions 3 and 7
and the kernel function K is made in Section 5.

3. Pointwise consistencies with an upper bound for mean square
errors

In this section we prove the pointwise mean square consistency
(and hence also the consistency in probability) of our estimators # and
r*, and obtain the speed of convergence in each case. In the sequel
we also prove the mean square consistency of h and g as estimators of
k and g and establish the speed of convergence. An explicit bound for
the mean square errors of # and r* are also obtained.

We denote

0.6a)=| £, vy ,
where f*%(z, y)=0f (=, y)/ox*,

hia)=\ vf*>(a, )y
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and

p(%)=§ v'f (2, y)dy .

Under certain regularity conditions, g, and h, are the s-th partial deri-
vatives of g and k. We, however, make no such regularity assumptions.
Whenever there is no ambiguity, we will not display the argument «
in r(x), #(x), r¥x), c.(x), Mx), g(x), h(x), g(x) and p(x) throughout this
paper.

THEOREM 3.1. Let h,, g, and p be continuous at x and g(x)>0.
Then

(3.1) E (#(z) —r(x))*=0(c: - 1)
where
7n—=max {62'! 7128’ (na)—l, (nﬂ)_l} .

To prove the theorem we will need the following lemma due to
Singh [13].

LEMMA 3.1. If g in the definition of r is not zero, then for every
L>0,

32 E (\%"‘l AL) 58" [E(i—hy+ (rf+Z ) EG-g7]

ProOF. The inequality is a special case of Lemma in the Appen-
dix of Singh [13] and hence it does not need a separate proof.

In the next two lemmas we prove the mean square consistencies

of h as an estimator of A and of g as an estimator of g respectively,
and in each case we obtain rates of convergence. With some choices
of 3 and 7 these rates are of the order O(n~*/“+¥) as noted by Rosenblatt
[9] for s=2, and Singh [12], [17], among others, and hence can be
made arbitrarily close to O(n™!) by taking s sufficiently large.

LEMMA 3.2. Let h, and p be continuous at x. Then the asymptotic
behavior of the mean square error of h at x is given by

(3.3) MSE (f(x))=E (h(z)— k(z))*
~ [(% hy() S t’K(t))z-{—(na)“p(x) S Kz] .

PROOF. We first obtain the asymptotic behaviors of E k and var (h).
Then we combine these to obtain (3.3).
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Since (Xj, Y)),: -+, (X, Y,) are i.i.d. with joint density f, from (2.3),
we can write

(3.4) Ei»(x)=§ S yK()f (z+t, y)dtdy .

As in Singh [12], expanding f(x+dt, ¥) at (x,y) in 3t by Taylor series
expansion with the integral form of the remainder, we get

Fla+at, y>=;§ (—‘;.?—!f"'“’(x, v)

1

=D

S:w (x4 ot—u)y1f"(u, y)du .

In view of this expansion and the orthogonality properties (2.2) of K
we get from (3.4),

(35) Eh@=|ufe vy

+S S yK(t) {-6:117 S:W (4t —u)y~Lf e (u, y)du} dtdy .

Thus,

3.6 oE (ﬁ(w)—h(x)):(sa_—;)! S S yK(t) {S“ @+ 3t—u)—

- 4O (u, y)du} didy .

But since z is a point of continuity of h,(a;):Syf"”’(a;, Yy, K is

bounded with |yK(y)|—0 as |y|— oo, by arguments used in Singh [12]
or in Menon, Prasad and Singh [5], the r.h.s. of (3.6) is, as m— oo,
asymptotically equivalent to

I - z+dt - R (.
= S yfrev (@, y) S K(t) Sz (x+ot—u) dudtdy_E S tK(t)dt

and we conclude that, as n— oo,

3.7) (E ﬁ(x)—h(m))~d'<l"-'§(!‘—vl S t'K(t)dt) :

Now we will evaluate the variance of A. By a change of variable
we see that

3.8) 3 E [nx(’%‘i)]’:S S K )ytf @+ t, y)dtdy .
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Since p is continuous at x, by arguments similar to those given in
Lemma 1 of Parzen [8], the r.h.s. of (8.8) is asymptotically equivalent

to p(x) S K*. Further, since

a“[E YIK( Xl;x )]2=a[s S yK(t)f @+t y)dtdyT:d(E h(w))

by (3.4), we have from (3.6), d7![E Y, K((X,—=)/3)]*=0(1). Thus since
X, Y), -, (X,,7Y,) are i.i.d., we conclude that

(3.9) var (h(z))~ (nd)'p(z) S K.

Now (3.7) and (3.9) give (3.3). This completes the proof of Lemma
3.2.

LEmMA 3.3. If g, 18 continuous at x, then
(310 MSE@@)~[(Za.@ |K®) +@n @ | K,

and if, instead, g, the s-th order derivative of g s continuous at x,
then (3.10) holds with g, replaced by g®.

PrOOF. Proof of (8.10) follows by arguments given for (3.3).

Remark 3.1. Taking 8 and 5 proportional to n~V*+*>, we see from
(3.3) and (3.10) that MSE (%) and MSE (§) are both of the order O(n-2/d+),
The value of 3 that minimizes the r.h.s. of (3.3) and that of 5 that mini-
mizes the r.h.s. of (3.10), are, nevertheless, given by

n_lp(x) S Kz 1/(1+438)
3.11) o*= :
23<h, (@) S t'K(t)/s!)
and
n'lg(x) S Kz 1/(1+28)
(3.12) = :
2s(g. @) S t’K(t)/s!)

respectively. Using these optimal values of 3 and 7 one can easily

obtain the asymptotic values of the mean square errors of h and ]
which are minimum over the class of all windowwidth functions 8 and
». However, since the exact value of the ratio p(x)/hi(x) for o* and
of the ratio g(x)/gi(x) for »* are not known, only approximate values
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of 3* and »* (by getting approximate values of these ratios) can be
used in practice. The expression for 7* is noted in Rosenblatt [9] for
8=2 and in Singh [15] for general s, among many others.

PrOOF OF THEOREM 3.1. Writing |#—r|=|(#—(7).)+((*).,—7)], we
have with probability one,

(=7l (| 27| Aca) HrlLirI>0) -

P}

Hence by Lemma 3.1,

(3.18) E(F—r)< 16(g)“[E (ﬁ—h)’—i—% max {|rP, ¢} E (§— g)’]

+2|rfI(r|>ec,) -

Now since ¢,—co as n— oo, there exists an m,=mn,(x) such that for all
n=n,, c,(x)=|r(x)| and the second term on the r.h.s. of (3.13) is equal
to zero for all =n,. The rest of the proof is now an immediate con-
sequence of (3.3) and (3.10).

Remark 3.2. Notice that (3.13) gives an explicit bound for each
sample size for the mean square error of the estimator of the regres-

sion curve in terms of MSE (k) and MSE (9). Exact asymptotic expres-
sions for these latter terms are in turn presented in (3.3) and (8.10)
respectively. Hence the exact asymptotic value of the bound (3.13)
for MSE (#) is at hand. To the best of our knowledge an explicit bound
with an exact asymptotic value for the MSE of a nonparametric regres-
sion curve estimate, of whatsoever nature it may be, is lacking in the
existing literature, inspite of a large number of articles on the subject.
It will be, however, interesting and challenging to obtain exact expres-
sion for E(r—r).

Remark 3.3. From Theorem 3.1 it follows that if 8 and % are
chosen in a way so that

(3.14) d~n=0(n-Va+9)
then 7, defined in Theorem 3.1 is of the order,
(3.15) 7a=0(n2/1+0)

and

(3.16) MSE (#(x)) =0(n"%/+ ¢l |

Remark 3.4. As pointed out earlier, if there is a known ¢,(x) such
that |r(x)|<c)(x), we would instead consider estimating r by r* defined
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in Section 2. It follows from the proof of Theorem 3.1 that
(3.17) E (r¥(z)—r(x))*=0(1,) .
Thus r* achieves an MSE rate of convergence better than #.

The following (3.18) and (8.19) are immediate consequences of (3.16)
and (3.17).

COROLLARY 3.1. (Weak consistency). Under the conditions of The-
orem 3.1 and (8.14), for every sequemce a,—> co

(3.18) |#(x)—7r(x)|=0(n"*"*®¢c, (2)-a,)  in prob.
and v
(3.19) |#*(x)—r(x)|=0(n~V "+ q,) in prob.

Remark 3.5. 1t is clear from the results in (3.1), (8.15), (3.18) and
(3.19) that larger the s the better the rate of convergence. However,
choosing a larger value of s means putting more restrictions on A and
g. Further, any choice of s more than 4 or 5 makes the computation

of h and g difficult. It is seen quite often in the case of density esti-
mates that the improvement in the rate of convergence with an s be-
ing 5 or more is not significant compared to the extra difficulty one
incurs in the computation of the estimates. The same is expected in
the case of regression estimates.

4. Uniform consistencies

In Section 3 we proved the mean square consistency and deduced
the consistency in probability of the estimators # and »* at a point z,
and in each case we investigated the speed of convergence. In this
section we plan to prove the uniform mean square consistency as well
as the uniform in probability consistency of # and r*. The following
theorem follows directly from the proof of Theorem 3.1.

THEOREM 4.1. Let B be any subset of the real line such that inf g(x)
zeB
>0 and sup|r(x)|<oo (the bounds in respective cases need mot be knmown) ;
zeB

and p, h, and g, are uniformly continuous on B. Then

@D sup E (w) — (@)’ = O(r-¢’)

where cx =sup ¢, (x), and 7y, is as defined in Theorem 3.1. Also
(4.2) sup E (r*(z)—r(2))'=0(ra) -
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Thus if & and 5 are proportional to n~"4+*  then

4.1y sup MSE (#(x)) =O(n~%/4+2. ck3)
T€EB

and

(4.2)’ sup MSE (r*(x))___O(n—Z:/(Hzn) ]

The result (4.1)’ or (4.2)' does not, however, prove the uniform weak
consistency of # or r*. If the characteristic function of K is absolutely
integrable and E|Y[<co, then it can be shown (see e.g., Parzen [8],
Bierens [1] or Singh and Ullah [20]), that

(4.3) E {snip |h(x)—E iz(x)|} =0((n3)™"?) .

Hence it follows from Lemma 3.2 that if A, and p are uniformly con-
tinuous on B, then

(4.4) " E {suglﬁ(x)—h(x)l} —O(max {&", (n3)~})
which in turn implies that, for every positive sequence a,— oo,
sup |(x)—h(x)|=0(max {3, (nd)“}}e,)  in prob.

Similarly, if the characteristic function of K is absolutely integrable
and g, is uniformly continuous, then

@5 B [suplo(e)—o(@)] =O(max {7, () 7)
and
sup |§(2) —g(x)|=0o(e, max {x', (ny)™"})  in prob.

for every positive sequence a,— oo.
To deduce the uniform weak consistency of # and 7* from the
above analysis, notice that as in the proof of Theorem 3.1, |#—r| is

bounded a.s. by ](il,/{])—(h/g)l/\c,.+|1'|I(|r|>cn), and the proof of Lem-
ma in the Appendix of Singh [13] gives

E sup <
zxeB

o) ) o ) gt s

+ (sup|r(@)l+ct) E sup|o(e)—9@)] -
Further, there exists an n, such that for all n=mn,, sup|r(x)|I(r(x)|>
Z€EB
¢,(x))=0 (this follows because sup |r(x)|<oco, though the upper bound
reB

need not be known, and ¢,(x)— oo for each x in B). From these anal-
yses, (4.4) and (4.5) we conclude the following theorem.

THEOREM 4.2. Let E|Y[<oco, and for a subset B of the real line,
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the hypothesis of Theorem 4.1 hold. Then

4.6) E [sup [#(x)—r(z)[} =0Gi"-cb)
and
@7 E {sup (@) —r(@)|| =0y .

Thus for any positive sequence a,— oo, it follows from (4.6), that
sup |#(x)—r(x)|=0(ry*c¥a,) in probability, and from (4.7) that sup |r*(x)
Zx€B X€EB

—r(x)|=0(r/*e,). Taking & and 5 proportional to nV***» 4 is of the
Order n—Zo/(l+2:).

5. Some concluding remarks

The choice of ¢, in the definition of our estimator # is completely
arbitrary, and it is not possible to give an explicit formula to deter-
mine a value of ¢, which may fit well in all practical situations. If,
however, in a particular situation, we have some knowledge, say A,,
of the range of the possible values of the response variable Y, we may
choose c¢,(xr)=A4,a, where ¢, is a slowly converging to infinity sequence
of n, something like logn or loglog #» (depending on how good is our
knowledge about the range of Y). In any case, ¢, must be chosen so
that n~*4+%®¢,—0 as n— oo.

Examining the asymptotic expressions of MSE (fL) and MSE (g)
obtained in Section 3, we remark that one should choose K so that

|S t'K(t)dt’ and SK !(t)dt be as small as possible. This is also the case

even if one uses the optimal 4 and 5 given in (3.11) and (3.12) respec-
tively, since with these choices of ¢ and 3, min (MSE (ﬁ(x)))~n'2’/““"-

w;(x), where

8\ 2/(1+28)

h () S t'K(t)l ) S K

w; (@)= (1+2s) o 5

and
min (MSE (§(x))) ~n~%/4+2 4, (x)

where
,g. (=) S t‘K(t)l 9(x) S K ') 2/C1+28)

w, (2)=(142s) o] 5e
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Now examining the optimal values of 4 and 5 given in (8.11) and
(3.12), we remark that ¢ and 5 should be proportional to »~""**  (This
has been pointed out in a number of articles on density estimates deal-
ing with rates of convergence, e.g. Rosenblatt [9] for s=2 and Singh
[15] and [17] for s>>0.) Examining the estimates §, we see that var (§)
will be large whenever the var (K((X,—x)/y)) is large, which in turn
will be inflated when var (X,)=o% (say) is large. To control this (and
hence to control var (§)) to some extent, we remark that 5 should also
be proportional to g5, that is, if possible, 7 should be taken to be g7/,
where o, is a good guess of oy and 7’ is proportional to n~V!*+* We
have the same view with 8 as well. This observation is originally
made in Singh and Ullah [19] in connection of estimating a multivari-
ate density.

Acknowledgement
Authors are grateful to NSERC of Canada for the research support.

UNIVERSITY OF GUELPH
UNIVERSITE DU QUEBEC A MONTREAL

REFERENCES

[1] Bierens, H. J. (1983). Uniform consistency of kernel estimators of a regression func-
tion under generalized conditions, J. Amer. Statist. Ass., 18, 699-707.

[2] Devroye, L. P. and Wagner, T. (1980). Distribution free consistency results in non-
parametric discrimination and regression function estimations, Ann. Statist., 8, 231-
239.

[3] Johns, M. V. and Van Ryzin, J. (1972). Convergence rates for empirical Bayes two-
action problems II. Continuous case, Ann. Math. Statist., 43, 934-947.

[4] Kale, B. (1962). A note on a problem in estimation, Biometrika, 49, 553-556.

[5] Menon, V.V., Prasad, B. and Singh, R. S. (1984). Nonparametric recursive estimates
of a probability density function and its derivations, J. Statist. Plann. Inference, 9,
73-82.

[6] Nadaraya, E. A. (1965). On nonparametric estimates of density function and regres-
sion curves, Theor. Prob. Appl., 10, 186-190.

[7] Noda, K. (1976). Estimation of a regression function by the Parzen kernel-type den-
sity estimators, Ann. Inst. Statist. Math., 28, 221-234.

[8] Parzen, E. (1962). On estimation of a probability density function and mode, Ann.
Math. Statist., 33, 1065-1076.

[9] Rosenblatt, M. (1956). Remarks on some nonparametric estimators of density func-
tion, Ann. Math. Statist., 27, 832-837.

[10] Schuster, E. F. (1972). Joint asymptotic distribution of the estimated regression func-
tion at a finite number of distinct points, Ann. Math. Statist., 43, 84-88.

[11] Schuster, E. F. and Yakowitz, S. (1979). Contributions to the theory of nonparame-
tric regression, with application to system identification, Ann. Statist., 7, 139-149.

[12] Singh, R. S. (1977a). Improvement on some known nonparametric uniformly consist-
ent estimators of derivatives of a density, Ann. Statist., 5, 394-399.

[13] Singh, R. S. (1977b). Applications of estimators of a density and its derivatives to



562

[14]
[18]

[16]

(17]

(18]

[19]

[20]

[21]

RADHEY S. SINGH AND MANZOOR AHMAD

certain statistical problems, J. R. Statist. Soc., 39, 357-363.

Singh, R. S. and Tracy, D. S. (1977). Strongly consistent estimators of k-th order
regression curves and rates of convergence, Zeit. Wahrscheinlichkeitsth., 40, 339-348.
Singh, R. S. (1979). Mean square errors of estimates of a density and its derivatives,
Biometrika, 66, 177-180.

Singh, R. S. (1980). Estimation of regression curves when the conditional density of
the predictor variable is in scale exponential family, Multivar. Statist. Anal. (ed. R.
P. Gupta). .
Singh, R. S. (1981a). On the exact asymptotic behaviour of estimators of a density
and its derivatives, Ann. Statist., 9, 453-456.

Singh, R. S. (1981b). Speed of convergence in nonparametric estimation of a multi-
variate u-density and its mixed partial derivatives, J. Statist. Plann. Inference, 5, 287-
298.

Singh, R. S. and Ullah, A. (1984). Nonparametric recursive estimation of a multi-
variate, marginal and conditional DGP with an application to specification of econo-
metric models, to appear in Commun. Statist.

Singh, R. S. and Ullah, A. (1985). Nonparametric time series estimation of joint DGP,
conditional DGP and vector autoregression, Econ. Theory, 1, 27-52.

Spiegelman, C. and Sacks, J. (1980). Consistent window estimation in nonparametric
regression, Ann. Statist., 33, 1065-1076.



