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Summary

The purpose of the present paper is to propose an analytical method
for ordered categorical responses obtained from a repeated measure-
ment/longitudinal experiment. The ordered categorical scale is assumed
to be a manifestation of a latent quantitative variable. A linear model
is assumed for location parameters of the underlying distributions.
Weighted least square method is applied to parameter estimation and
subsequent analysis. Two data sets are analyzed to show several as-
pects of analysis by the proposed model and to discuss comparative
characteristics of analysis compared with earlier analysis. A mention
is made for a computer software program for the proposed model.

1. Introduction

Many articles have discussed experiments in which one response
variable is repeatedly observed on the same subject. Such an experi-
ment is referred to as a repeated measures experiment and is very
common in psychology, medical and social sciences. When observed
variables are quantitative, analysis of variance technique such as mixed
model ANOVA, split-plot ANOVA, randomized block ANOVA and multi-
variate ANOVA can be applied according to the design. Non-parametric
methods based on ranks are also applicable. Extensive discussions and
bibliographies have been given in Bryant and Gillings [4], Koch et al.
[7] and Timm [13]. When the observed variables are categorical, axc
X ---Xc table is obtained, where a is the number of populations and
¢ is the number of categories. Analysis of a square or cubic table has
been paied considerable attension in literature including Bishop, Fienberg
and Holland [3], Koch and Reinfurt [9] and Plackett [11]. In these
literature testing symmetry and marginal homogeneity is discussed.
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For factorial analysis of an axc¢Xx ... Xc table, Koch et al. [8] present
a general methodology based on so-called GSK approach proposed by
Grizzle, Starmer and Koch [6]. In case of ordered categorical data,
they propose to utilize scores assigned to ordered categories and an
analysis based on a linear model for mean scores. If we are interested
in a special dichotomization of response categories, more extensive
methods can be applied as are given in Section 3 of Koch et al. [8].
Another interesting model for a square table is given by McCullagh
[10] based on marginal logistic distribution.

In the present paper another approach to analysis a ¢x--. X ¢ table
or an axcX---xc table is presented based on a multivariate latent
scale linear model proposed by Uesaka and Asano [14] and [17]. To fix
the problem discussed in the present paper, let us give an example.
In a randomized controlled clinical trial, drugs under study are ran-
domly allocated to a number of patients, and severity of disease, symp-
toms and degrees of improvement are observed on the respective or-
dinal categorical scales at each of several successive time points. In
some cases, quantitative responses are evaluated on the ordinal cate-
gorical scales. In a randomized controlled study of an antiulcer drug,
the diameters of ulcer are measured at first medical examination and
several time points during administration period. Table 1 shows the
classification of the percentages of the diameters of ulcer at 2, 4 and
6 weeks of administration period to those of the first examination.
The three classes are 0-20%, 21-50% and 519-, which are scored 1,
2 and 3, respectively. In the study many patients missed X-ray in-
spection at least an observation period. When the ulcer had been suf-
ficiently small at an observation period, the subsequent measurements
were often skipped. In this case, score 1 was given. As a result 93
patients were available for the present example. The questions of in-
terest arise as follows:

(1) Is there any difference among drugs regarding the changes

of responses over time ?

(2) What is the nature and extent of the differences?

(8) When do the effects of drugs become noticeable ?

(4) Which drug is the most effective ?
and so on.

Another example is cited from McCullagh [10], where a 3x3 table
is analyzed and difference in location parameters between the two time
points is estimated to test whether there exists a significant change
over time. These two data sets will be analyzed by the proposed
method and be compared with earlier methods of analysis.

In Section 2, the model and hypotheses are given, and the methods
of estimation of parameters and testing statistical hypotheses are pre-
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Table 1. Observations for each patient.

Drug A, Drug A. Drug As
No- 2w 4w 6w 2w 4w 6w 2w 4w 6w
1 2 1 1 3 3 2 3 2 2
2 2 2 1 2 1 1 1 1 1
3 2 1 1 2 1 1 3 2 1
4 3 1 1 1 1 1 3 1 1
5 2 1 1 2 1 1 3 1 1
6 2 1 1 2 1 1 2 1 1
7 3 2 1 1 1 1 3 1 1
8 2 1 1 3 1 1 1 1 1
9 3 3 3 2 2 1 3 1 1
10 3 2 1 2 1 1 3 1 1
11 3 2 1 3 1 1 2 1 1
12 3 3 2 3 1 1 2 2 1
13 2 1 1 3 3 2 3 1 1
14 2 1 1 2 1 1 3 2 1
15 3 3 2 3 1 1 3 1 1
16 2 1 1 3 2 1 1 1 1
17 3 1 3 2 1 1 1 1 1
18 3 1 1 2 1 1 3 1 1
19 3 1 1 3 2 1 1 1 1
20 3 2 2 3 2 1 2 1 1
21 3 1 1 2 1 1 2 1 1
22 3 2 1 2 1 1 3 1 1
23 3 2 1 2 1 1
24 3 1 1 3 3 1
25 2 1 1 3 1 1
26 3 1 1 2 2 1
27 3 1 1 2 2 1
28 2 1 1 2 1 1
29 3 3 2 3 .2 1
30 3 2 2
31 3 3 2
32 3 1 1

sented in Section 8. The Sections 4 and 5 are devoted to illustrations
of analysis. In Section 6, a mention is made on computer software
system for analysis of the proposed model. And the final section is to
discuss other analytical methods and related topics.

2. Mathematical model and hypotheses

A random sample of n subjects is divided into I groups of sizes
Ny, Mgy« + +, N; to which I treatments A, A,,---, A; are randomly assigned.
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A response variable X is then observed on every subject at each of K
successive time points B,, B,,---, Bx. Every response is classified into
one of ¢ ordered categories. Without any loss of generality, the u-th
category is denoted by an integer u, u=1,---,¢c. Let X,,=(X;,---,
X,,x)', where X, is the observation at B, on the j-th subject in the
+-th group, k=1,---, K, j=1,---,m, 9=1,---, I. The sample space of
X, is S={1,2,-.-,¢}*. Let x=(x,,--:, 2x) be any element of S and
N(x) be the number of observations having X;;=x in the i-th group,
t2=1,..., I, respectively. Let N,(u) and N,,(u,v), u,v=1,---,¢, k, m
=1,..+, K (m+#k) be the univariate and bivariate marginals of N,(x),
respectively. Further, let »,(x) and p;..(u,v) be the corresponding
univariate and bivariate probabilities. Then the {N,(x)} have a product
multinomial distribution.

Now we assume that the observed variable X is a manifestation
of a latent continuous response Z basing on several unknown threshold
values. Let Z,,=(Z;;, -, Zi;x), where Z,;, is the latent response at
B, of the j-th subject in the i-th group, k=1,---, K, j=1,---,m, 1=
1,..-,1I. Assume that

(2.1) Xijk=u ’ for "'u-léztjk<7-'u ’
u=1,---,¢, k=1,---,K, jzl,"'rnir i=17"';Iv

where 7y=—o0, r,=+4o and 7;---, 7., are unobservable parameters
to show threshold values. Now let Z,, j=1,---,n, be independently
and identically distributed with a K-variate continuous distribution G,(2)
=G(z—p,), where g, =(gy, -, puix)’ is an unknown location parameter
vector, i=1,---, I, and G(2) is a K-dimensional continuous distribution
function, where G(z) is assumed to be interchangeable in its K variates
and F'(z) denotes the common univariate marginal c.d.f. of G(z). Then
we have

(2.2) ptk(u)=F(Tu"‘F¢k)—F(Tu—i—#tk) ’
u=1,.+-,¢, k=1,---,K, i=1,...,1I.

A linear model for g, is now proposed as the following expression
(2.3) pu=1ﬁ‘, wiB,,  k=1,---, K, i=1,---,1,
=1

where 8y, - -, B, are unknown parameters and w?*’s are known constants.
For notational convenience we may write 8=(8,,- -+, 8,), p=(gel,- -+, p1)’

and
Wy e, Wy
wizr"" wjl)z
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(2.4) W=

'w:x!' ] w)l:K
. .

IK K
wt ,...,w‘l,

Then the model defined by (2.3) is expressed as g=W§g. The hypothesis
of interest is represented by

(2.5) HB=h,

where H is an X p full rank given matrix and A is an r-dimensional
given vector.

Let us consider the univariate marginal distribution F'(z). In what
follows we assume that F'(z) has positive, continuous and bounded first
order derivative f(2) at any finite 2z, which is only one condition about
F'(z). Usually a normal or logistic distribution is applied in univariate
analysis, but these symmetric distributions sometimes fail to fit to data
and skewed distributions have come into use. Usual candidates of the
latent distributions are normal, logistic, first and second double ex-
ponential distributions, (reversed) generalized logistic and the (reversed)
log-gamma distributions. For further discussion about latent distribu-
tions and latent scales, see Uesaka and Asano [15].

3. Method of analysis

3.1 Parameter estimation

The model defined in the preceding section specifies only the uni-
variate marginal probabilities. Thus the usual method of estimation
such as maximum likelihood or minimum chi-square cannot be applied.
However, if we define

(3.1) qu(u)=Pr (X, <u),
’U/=1,"',0, k=1v"'9K1 j=17"'7n17 ’i=1,"',I,

we have

(3.2) () =F'(z,— pa)
u=1,--,¢, k=1,..--,K, i=1,...,1I.

Thus we have

)
3.3) F(quw)=1.— Z}l wiBy
u=1,-..,¢-1, k=1,-..,K, 1=1,---,1I.
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In other words, the model is re-expressed in terms of a linear model
for functions of cell probabilities and weighted least squares method,
like Bhapkar [2], Grizzle, Starmer and Koch [6], can be applied to
parameter estimation. Let
(3.4) Qan(u):ugl N,(')[n,,

u=1,--.,¢—-1, k=1,---,K, i=1,---,1.

Then the covariance between v n,Q.(%w) and v n,Q,.(v) is

i é Pixn(W', V) —qi(U)qim(v) , k+m,
(8.5) ofim(u, v)=4 vt
Q¢x(uo)—41¢k(u)q,m(v) , uo=min (u, 'U) , k=m.

The estimate };.(u, v) of o¥.n(u, v) is obtained by substituting p,.(u, v)’s
and ¢q,(u)’s for their sample values.

In order to identify parameters, we impose a constraint on r,’s that
4+ ++7.,=0 in order to retain symmetric relation among z,’s, and
define v=(zy,--+, 7._y).- Thus z,_;=—(ry+---+7.;). Further let

y A

-1,

3.6) A1=1x®[ J  A=L®L.,

where I, and I,_, are KXK and (¢c—2)X(c—2) identity matrices, re-
spectively, and 1z, and 1,_, are the K and (¢—2)-dimensional vectors
with all elements 1, respectively. Also letting

7/(1:('“/) =Tu— HLik s Y. (u)= F —I(Qu(u)) ’
u=1,--.,¢-1, k=1,.--,K, i=1,-..,1,

Ni=(u(1), -+, nulc—1),+ -+, nix(c—1))’,
Y.=(Y,QQ),---, Yy(c—1),---, Yiz(c—1)),

e=Y,—n,=(e,1), -, e4(c—1),- -, ex(c—1)),
for ¢=1,...,1I,

3.7

the latent scale linear model is re-expressed by a linear model for ¥,
1=1,.--, I as follows:

K=71+et ’ 7]¢=AIT—A2!I¢ , 7::1,. ., I,
pr=Wg.

The error vector v m,e; has the asymptotic K(c—1)-dimensional normal
distribution with mean vector 0 and variance-covariance matrix ;=

(3.8)
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(0¢,km(u, v)), where

(3.9) 04 in(Uy V)= 0F im(%, V) f (0(U)) f (9im(V))

u,v=1,--.,¢—1, k,m=1,--.,K.

Denoting the sample estimate of o;,.(%,v) by 6, in(u,v), let V=
(04,xm(u, v)), and V be the block diagonal matrix of (n/n,) V-, (n/n;) V;,
and let Y=(Y7,---,Y?), e=(e,,:--, e})’, and

A —A,
= : -0
A=| - 0 - .
Al —Ag
Then the full linear equation for the model is simply written as
(3.10) Y=A(;)+e.

Applying the method of weighted least squares with empirical weight
matrix V', we obtain estimates of = and x;

3.11) ( ; ) —(A'VA)A' VY.

The simultaneous estimates of = and 8 are

A warv-1 a4y T
(3.12) (E)—V*W*(AV A)(ﬂ>,
where
L; 0
(8.13) W*=[ 0 W]’
and
(3.14) V¥=[(AW*) V- (AWH)].

3.2 Some properties of estimators and testing statistical hypotheses

Now let us consider some asymptotic properties of weighted least
squares estimators of = and B, and of test statistics for some statis-
tical hypotheses. Main results are direct consequences of theorems on
the method of weighted least squares by Bhapkar [2]. In what follows
we assume that n,,---, n; tend to infinity under the condition that
(3.15) lim n,/n=2,>0, 1=1,-..,1I.

n—o0

Let ¥ be the block diagonal matrix of (1/1,)%,,---, (1/4;)¥;, which is
the limit of V as n,’s tend to infinity. Further let
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(3.16) IX=[(AW*)Z(AW*)]".

Then we obtain the following properties.
(1) When # tends to infinity under the condition (8.15), ¥ n (¢ —7)

and + W(,é—ﬂ) belong asymptotically to a joint normal distribution
N(0, XT%).

The predicted value of % is given by #=AW*#, #) under the
model specified by (2.3) and (2.4), and v'n (§—9) is approximately dis-
tributed in the multivariate normal distribution with mean 0 and vari-
ance-covariance matrix

(3.17) ZH)=(AWHIHAW* .

The estimate V(7)) of 2(3) is obtained by replacing 2* by V* in (3.17).
This distribution of % is singular when ¢=3. The residual vector is
given by Y —2 and its variance-covariance matrix is estimated by
n(V—V(%)). This covariance matrix is of rank IK(c—1)—(p+c—2).
The residual sum of squares is given by

(3.18) SS(#, B)=m(Y —9) V(Y —3).

The goodness-of-fit of the model (3.8) is evaluated by SS(%, ,é) for the
model, that is, the following proposition holds.
(2) When the model defined by (2.3) and (2.4) is true, as n,/’s

tend to infinity under the condition of (3.16), SS(¢, ,é) has an asymp-
totic chi-square distribution with IK(¢c—1)—(p+c¢—2) degrees of freedom.

The statistic SS(#, B) of the goodness-of-fit suggests the validity
of combined specification of marginal probabilities as given by (2.3)
and (2.4). Alternatively, the validity of the model can be assessed in
two steps. The first is directed to the validity of the assumption for
marginal distribution. The statistic for goodness-of-fit is given by

(3.19) SS(Z, ﬁ)=n<Y—A<f))'V-I(Y—A( ’))

v L
When the model (2.3) is true, the statistic has asymptotic chi-square
distribution with (IK—1)(c—2) degrees of freedom. The second step
is for the structure of g defined by (2.4). When our assumptions for
the marginal distributions are true and the model #= W§ holds,

(3.20) SS(B|i5y=n(a— WBY V(@) (z— Wh)

has asymptotic chi-square distribution with IK —p degrees of freedom,
where V(&) is the estimated variance-covariance matrix of X(#%). Thus

we can test the adequacy of the model pw=W§g by referring SS(8| &)
to chi-square distribution with IK —p degrees of freedom. It is noted
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that SS(¢, B)=SS(#, @)+SS(B|4).
Now let us consider testing a linear hypothesis H,: H8=h. The
chi-squared test statistic is given by

(3.21) X*=n(HE—hY[HV(H)H'| (HE—h) ,

where V(B) is the estimated covariance matrix of vn B and is given
as a submatrix composed of the last pxp elements of V*. From (1),

we have
(3) When our model is true and H, holds, X* defined by (3.21)
has asymptotic chi-square distribution with r degrees of freedom.

3.8 Adjustment for zero frequencies

When there are zeros in Ny,(u, v)’s, F~(Q.(u))’s happen to be un-
bounded, or V; sometimes becomes singular. The singular covariance
matrix is obtained when, for example, N;.(1,1)>0 and N,.(u, v)=0
for u=1, v>1 and #>1, v=1. In order to avoid such a difficulty, some
adjustments for {Q.(u,v)} and {P,(u)} are required. The usual sug-
gestion is to add some small numbers to the frequencies. For example,
one may employ N,(u)+1/c and N,.(u,v)+1/¢* instead of N, (u) and
N,.(u,v) and replace n, by n,+1. The asymptotic results stated in
the subsection 3.2 remain valid under such adjustments.

3.4 Asymptotic power of the test under local alternatives
Let us consider a Pitman type sequence of alternatives such as

(3.22) u>=W(E"+¢/vVn),

where n is the total sample size and g™ is the location vector. A€
and & are unknown p-dimensional constant vectors, such that HBV=0
and H&+0, where H is an rXp known matrix of rank r. Let X*®

be the asymptotic covariance matrix of +n (¢, ﬁ’)’ for infinitely large n.
Let I*(8) be the submatrix of *® composed of the last pXp elem-
ents. Then we can state that the chi-squared statistic for testing the
linear hypothesis H8=0 has asymptotic noncentral chi-square distribu-
tion with » degrees of freedom and the noncentrality parameter

(3.23) r'=(HEY[HZ**(B)H']"'(HE) .

4. Andlysis of the data in Table 1

4.1 Analysis by the present model

In a randomized controlled study, usually drugs are assigned to
patients according to double blined method and restricted random per-
muted blocks of several patients. Although the present study was
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conducted in this manner, we neglect the aspect of this particular
randomization scheme and the patients are treated as if they con-
stituted random samples of respective sizes. Because the original ran-
domization is meaningless due to drop-outs of many patients from
measurements and the block size is too small.

It is often assumed that the size of an organ has a log-normal
distribution. If the logarithmic transformations of the sizes of ulcer
on the same subject jointly have a multivariate normal distribution,
the ratio of the sizes is also log-normal. Thus it may be reasonable
to assume the latent distribution to be normal. Table 2 shows cross
classifications of observations in Table 1. Since there are several emp-
ty rows and columns, adjustment for zero frequency was done follow-
ing the rule given in subsection 3.3. The matrices A4, and A, are

[ 17 [1 0 0]
-1 1 00
1 010
A= 1 and A;= 010
1 0 01
| —1 | L0 0 1]

The estimates of population mean vectors for the drugs and threshold
7, are obtained by using W=1,. Table 3 shows these estimates and
their estimated standard deviations. Changes of mean values over time
are shown in Figure 1. The chi-squared value for goodness-of-fit of
the normal linear model is 7.372 with 8 degrees of freedom. The drug
A; has been conjectured to have little effect on ulcer. The drug A4, is
mixture of A, and A, and has been expected to be most effective and

Table 2. Two-way cross-classification of the data in Table 1.

Pair of

weeks 2w-4w 2w-6w 4w-6w
Drug

Category 1 2 3 1 2 3 1 2 3

1 0 0 0 0 0 0 12 0 1

Ay 2 8 1 0 9 0 0 5 1 0
3 5 5 3 8 3 2 0 2 1

1 2 0 0 2 0 0 22 0 0

A 2 12 1 0 13 0 0 5 1 0
3 8 5 4 12 5 0 0 4 0

1 5 0 0 5 0 0 21 0 0

As 2 (3 3 0 9 0 0 6 1 0
3 10 4 1 14 1 0 1 0 0
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Table 3. Estimates of mean values and its estimated
standard deviations based on normal dis-

tribution.
Drug 2nd week 4th week 6th week
4 Mean 0.784 —0.461 —0.967
! sd 0.267 0.288 0.264
) Mean 0.623 —0.813 —1.448
! sd 0.207 0.211 0.261
A Mean 0.488 —1.039 —2.047
: sd 0.214 0.236 0.377

Latent response

Category 3

Category 2

+
6w Time
T fpmmmmmm e e e e e AN e -——

-1.0 A,

Az
Category 1

—2.0F Aj

Fig. 1. Changes of mean values of latent responses
for three drugs.

that the effect is largely due to A;. Thus our interest is in the dif-
ferences between A; and A4,, and A, and A,. It is also known that
ulcer tends to cure, if life environment of the patient would be im-
proved. Taking these into consideration, let us redefine parameters as
follows ;
B, is overall mean,
B, is the mean difference between A, and A4,,
B; is the mean difference between A4, and A4,,
B. and B, are linear and quadratic trends over time points averaged
over the drugs, respectively,
Bs and B; are linear and quadratic trends over time points for the
differences between A; and A,, respectively,
B: and B, are linear and quadratic trends over time points for the
differences between A, and A,, respectively.
Thus we take W as
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110 1 1 1 0 1 0]
110 0-2 0 0-2 0
110-1 1-1 0 1 0
101 1 1 0 1 0 1
wW={101 0-2 0 0 0-2
101-1 1 0-1 0 1
100 1 1 0 0 0 O
100 0-2 0 0 0 O
10 0-1 1 0 0 O 0]
The estimate of 8, and its estimated standard deviation for j=1,---,p
are as follows:
B,=—0.866 B,=0.651 B:=0.302
(0.191) (0.274) (0.262)
Bi=1.268 B;=0.086 Bs=—0.392
(0.211) (0.086) (0.252)
B=—0.232 B:=0.037 B, =0.047
(0.246) (0.109) (0.098)

Tests of significance of factor effects are performed by using appro-
priate H matrices in (2.5). The results are given in Table 4. The in-
teraction effects between drugs and times are negligible. The main
effect of time is highly significant, and is mainly due to linear trend.
The significance probability of main effect of drugs is a little greater
than 0.05. However the difference between A, and A4, is 0.651 with
estimated standard deviation 0.274, and is significantly different from
zero at 59, level of significance as was expected.

Table 4. Table for analysis of chi-squares.

Factor Degrees of freedom Chi-squared value
Main effect of Drugs (A) 2 5.640
A;—A; 1 5.639
A—As 1 1.490
Main effect of Time (T) 2 43.562
Linear 1 36.128
Quadratic 1 0.997
Interaction effect 4 2.514

4.2 Differences of results from different latent distributions
Now let us examine effects of different latent distributions. Dis-
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tributions to be examined are those given in Section 2. However,
since the generalized logistic family and reversed generalized logistic
family are very similar to reversed log-gamma family and log-gamma
family, respectively, and the former families are much easier to treat
with, the (reversed) log-gamma family is not examined. Table 5 shows
goodness-of-fit of the models of the four one-parameter distributions.
Curves of the goodness-of-fit statistics of the generalized and the re-
versed generalized logistic distributions are plotted in Figure 2. When
v, the shape parameter, tends to infinity, generalized logistic distribu-
tion approaches to the first double exponential distribution and also

Table 5. Goodness-of-fit statistics of the four distributions.

Latent distribution

Normal First DE Logistic Second DE

Total group 7.372 4.846 6.284 11.817
Ay 3.301 0.993 2.459 3.699
A 3.480 1.297 3.228 5.689
A 0.591 2.555 0.598 2.432

Residual SS
12.0 F e e 11.817

Reversed generalized
logistic

Generalized logistic

4.0

3.or

2.0

1.0}

0 1 1 A 1

1 1
0 1.0 2.0 3.0 4.0 5.0 6.0
Shape parameter

Fig. 2. Changes of residual SS in generalized logistic and reversed
generalized logistic distributions.



526 HIROYUKI UESAKA AND CHOOICHIRO ASANO

the reversed generalized logistic one does to the second double ex-
ponential distribution. Thus in the former family the minimum value
of the goodness-of-fit statistic might be attained by the first double
exponential distribution. In the latter family the minimum value 5.101
was attained at »=0.50. The smallest value of the goodness-of-fit
statistic obtained was 4.846, which was given by the first double ex-
ponential distribution. The largest value, 11.817, was given by the
second double exponential distribution, which is the reflection of the
first double exponential distribution in a vertical line. From these re-
sults, the second double exponential distribution seems to be inappro-
priate, although the goodness-of-fit statistic does not indicate inadequacy.

Next let us examine differences of the test statistics of the factor
effects among the latent distributions. Table 6 shows the test statis-
tics of the factor effects based on each of the four distributions. Chi-
square values for testing main effects of drugs and time are consider-
ably different among the four distributions, and the order of magnitude
of the statistics is not consistent with those of the goodness-of-fit
statistics. Fortunately, in the present data, we reach the same con-
clusion.

Table 6. Test statistics for linear hypotheses about factor
effects.

Latent distribution

Normal First DE Logistic = Second DE

Drugs 5.640 5.949 4.160 4.359
A—As 5.639 5.813 4.155 4.341
A;—As 1.490 1.808 1.189 1.029

Time 43.562  31.115 35.574 39.665
Linear 36.128  20.195 26.209 38.513

Interaction 2.514 2.959 2.655 2.223

All factors 100.303  89.019 77.093 81.323

5. Analysis of coalface worker's data

McCullagh [10] analyzed a 4x4 table obtained by classifying 82
coalface workers according to the degrees of pneumoconiosis evaluated
twice, the interval being 2.5 years. The scale {1, 2, 3, 4} indicates in-
creasing severity of the disease. McCullagh assumes that X,,, the
rating of the severity at the k-th time on the ¢-th individual, is ob-
tained as

Xik=u ’ if Tu—l§Z1k<Tu ’

and
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Zun=U+ 4+ Yu, k=1,2, i=1,.-.,m,

where {Y,,} are independently and identically distributed in the standard
logistic distribution. He also assumes that U, is a nuisance parameter,
and developes a conditional argument for estimation of 4=(u;— u,).
The method does not provide any estimate of r, and testing goodness-
of-fit of the model. In the present method, (U;+Y,, U;+Yy), i=1,---,
n are assumed to be independently and identically distributed in an
interchangeable bivariate distribution. Four distributional models of
the marginals of the bivariate distribution were examined. Adjust-
ment for cell frequencies given in Section 8 was also applied. Table 7
shows the goodness-of-fit statistics, estimated parameters, their stand-
ard deviations and correlation coefficient and test statistics for the
hypothesis that there is no progression of the disease, that is, 4 is
zero. Among the latent distributions, no substantial difference is ob-
served in goodness-of-fit statistics as well as the test statistics for the
null hypothesis about 4. To see the effects of the adjustment of cell
frequencies, same information as that in Table 7 is given in Table 8.
This shows that the adjustment gives rather conservative results.
Now let us compare our results with those in McCullagh [10]. He

gives two estimates of 4; 4=1.45 (sd=0.53) and 4*=1.503 (sd=0.53).
Test statistics for the null hypothesis that 4=0 are, thus, 2.7 and 2.8.
On the other hand, the estimates of 4 and their standard deviations

Table 7. Results of fitting four latent distributions to the
coaleface workers data with adjustment.

Latent distribution

Statistic

Normal Logistic First DE  Second DE

Residual SS 0.886 0.916 1.263 1.031

N —0.895 —1.495 —1.592 —0.506

(0.140)  (0.252) (0.226) (0.119)

fiz —0.604 —1.005 —-1.197 —0.236

(0.128)  (0.222) (0.189) (0.122)

Corr ({1, fis) 0.773 0.789 0.816 0.755

4 0.292 0.491 0.395 0.269

sd (0.091)  (0.155) (0.130) (0.084)

ratio 3.212 3.158 3.151 3.202

1 —0.462 —0.791 —0.675 —0.423

(0.066) (0.121) (0.109) (0.061)

) —0.090 —0.184 —0.186 —0.056

(0.055)  (0.099) (0.090) (0.047)

Corr (%4, £3) 0.174 0.299 0.398 0.006
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Table 8. Results of fitting four latent distributions to the
coaleface workers data without adjustment.

Latent distribution

Statistic

Normal Logistic = First DE  Second DE

Residual SS 0.918 0.965 1.350 1.085

fi1 —0.909 —1.521 —1.615 —0.516

0.141)  (0.256) (0.230) (0.119)

fiz —0.612 —1.016 —1.203 —0.248

0.129)  (0.223) (0.191) (0.121)

Corr (fi1, fis) 0.811 0.824 0.844 0.803

4 0.297 0.505 0.412 0.268

sd (0.084)  (0.146) (0.123) (0.075)

ratio 3.553 3.470 3.345 3.554

%1 —0.461 —0.790 —0.673 —0.420

0.068)  (0.124) (0.113) (0.062)

(2 —0.092 —0.186 —0.187 —0.057

(0.055)  (0.101) (0.092) (0.047)

Corr (%1, t2) 0.198 0.323 0.417 0.018

obtained from our model based on the logistic distribution and analysis
with and without adjustment are 0.491, sd=0.155 (ratio=3.158) and
0.503, sd=0.149 (ratio=3.470), respectively. Thus our method gives
more convincing evidence for the progression of the disease than Mec-
Cullagh’s method.

Further, McCullagh [10] gives results of analysis based on ex-
ponential and normal distributions which use only the information in
the marginals. The estimates of 4 are equal to those in the present
analysis based on the respective latent distribution. However, the
standard deviations of the estimates are much larger than those of the
present analysis.

6. On computer software

A computer program for the method proposed in the present paper
was written by one of the authors and has been implemented to the
NISAN system developed by Asano et al. [1]. The command is ANOCM
and is for the multivariate latent scale linear model discussed by Ue-
saka and Asano [17]. ANOCM permits an interactive analysis. Details
are given by Uesaka and Asano [16].
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7. Discussion

Analysis of ordered categorical data from repeated measurement/
longitudinal studies is very important in medical, social and psychologi-
cal researches. Usual analysis may be conventional parametric analysis
of variance using pre-assigned scores, such as split-plot ANOVA, mixed
model ANOVA, multivariate ANOVA for general linear hypotheses
about mean scores. However, these are not valid because of violation
of the conditions about covariance structure. There are a few articles
which discuss the analysis of repeated measurement/longitudinal experi-
ments on ordered categorical responses. Koch et al. [7] discussed vari-
ous aspects of repeated measurements and suggested to use Wilcoxon
type rank analysis of variance. They also suggested not to apply the
rank method to subjective ratings such as improvement of a disease.
Koch et al. [8] and Koch and Reinfurt [9] proposed a linear model for
mean scores based on pre-assigned scores and to analyze by the method
of weighted least squares. This approach avoids the invalidity involved
in conventional parametric analysis. The pre-assigned scores can pro-
duce cumulative probability up to a specific category. These approaches
do not assume any latent continuous scale, and are directed to com-
parisons of summary measures such as mean scores, cumulative prob-
abilities, response ratio to a specific set of categories, ete. Also it
does not assume any model for the response structures. The summary
measure should be selected in advance of analysis, and there is no
statistical way to assess the validity of the measure. When the within-
subject factor is ordinal, multivariate rank test can be applied for
testing hypotheses about regression coefficients (see Ghosh, Grizzle and
Sen [5]).

On the other hand, our approach gives parametric model for uni-
variate marginal probabilities, scale values of the categories, predicted
values of the category probabilities as well as summary measures of
factor effects. This additional information is provided by imposing the
more stringent conditions on the nature of response variables. Our
approach can be applied to subjective rating scales assuming the uni-
dimensionality of the latent psychological continuum and theory of sub-
jective measurement developed by Thurstone and others (see Thurstone
[12]).

Furthermore, we can assess the validity of the latent scale, that
is, the latent distributional model. The criterion of selecting the latent
distribution may be

i) physical meaning and interpretability,

ii) goodness-of-fit,

iii) to attain simple structure.
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When the model gives poor fit, possible reasons are; unequal correla-
tions between variables, heteroscedasticity among variables and/or popu-
lations, differences in criteria for categorical judgement among variables
and/or populations, unequal latent distributions between variables and/
or populations, etc. Thus we can get deep insight into the response
structure.
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