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Summary

For the problem of testing a composite hypothesis with one-sided
alternatives of the mean vector of a two-dimensional normal distribu-
tion, a characterization of similar tests is presented and an unbiased
test dominating the likelihood ratio test is proposed. A sufficient con-
dition for admissibility is given, which implies the result given by Cohen
et al. (1983, Studies in Econmometrics, Time Series and Multivariate
Statistics, Academic Press): the admissibility of the likelihood ratio test.

1. Introduction

In the present paper we treat the problem of testing the null hy-
pothesis H,: min (g, v)=0, against the alternative H;: min (g, »)>0,
where (g, v) is a mean vector of two-dimensional normal random vector
(X, Y) with the identity covariance matrix. The likelihood ratio test
(LRT) derived by Inada [6] and Sasabuchi [10] rejects H, if min (X, Y)
>z, where z, is the upper ax100% point of the standard normal dis-
tribution.

Cohen et al. [3] have proposed a test for the hypothesis that the
difference between two marginal probabilities is zero in the 2x2x2
contingency table with conditional independence. Their problem is re-
duced to ours when the sample size is large.

In Section 2, we will present unbiased tests. For this purpose we
first give a necessary and sufficient condition for a test to be similar.
Then we show that any non-randomized tests whose rejection region
lies in one side of a line cannot be similar, and that any non-trivial
monotone test cannot be similar. We also give a sufficient condition
for a test to be unbiased for testing H, vs. H,. A test proposed by
Lehmann [7] is an example of unbiased tests in our testing problem.
Note that, treating a hypothesis which is slightly different from ours,
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he showed that there exists no non-trivial unbiased test.

On the other hand it may be seen that Lehmann’s test is also an
example of tests whose power functions uniformly dominate the power
function of the LRT with the same level. Analogous phenomena are
reported by several authors, Berger [1], Berger et al. [2], and Warrack
et al. [11]. We will not go further on this problem in this paper, but
it will be interesting to compare this with the results of Cohen et al.
[4] that the LRT is admissible and uniformly most powerful among
monotone tests, which is defined in Section 2.

In Section 3, we will present a class of admissible tests containing
the LRT. A class of inadmissible tests is also given. In Section 4, we
will relax the assumption of normality and introduce exponential type
distributions. The results in Sections 2 and 3 are extended for these
distributions.

2. Unbiased tests

Denote by ¢ a test function for testing H,;: min (g, v)=0 against
H,: min (g, »)>0. The expectation of ¢ is denoted by E, (¢), and
the conditional expectation of ¢ given X=u is denoted by E, ., (¢|X=
x). The standard normal density function is denoted by ¢.

At first we determine the class of similar tests since unbiased tests
are necessarily similar in our problem.

THEOREM 2.1. A test ¢ with size a 18 similar if and only if
E(o,o)(gle:x):a a.e. x and E(o’o) (¢lY=y)=ot a.e. Y.

Proor. If ¢ is similar, then

s S oz, yo(x—p) g (y)dady=a for all x>0,

and the completeness of X (cf. Lehmann [8], p. 132) implies
S o, y)p(y)dy=a  for almost all z.

Thus the conditional expectation of ¢ given X=x is a almost every-
where. The same is true given Y=y. The converse is obvious.

COROLLARY 2.1. If the rejection region denoted by [(x, y): ¢(x, y)>0]
lies in one side of a straight line, then the test ¢ is mot similar.

Proor. Assume, without loss of generality, the straight line is
not parallel to the X-axis. For (g, v)=(0, 0) the conditional expectation
given X=x tends to 0 when = goes to 4o or —oo, and hence it can-
not be constant for —co<x<oco. Hence cannot be similar from Theo-
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rem 2.1.
A test ¢ is said to be monotone if x<z' and y<y' imply ¢(x, ¥)<

o', ¥).

COROLLARY 2.2. If a test ¢ 1is both momotone and similar, then its
test function ¢(x, y) is constant.

Proor. For fixed y and ¢’ s.t. y<¥', we have from the similarity

| @@ 1) 42, 9)p(@)da=0 .

As the integrand is nonnegative, ¢(z, y)=¢(z, ¥’) for almost all z. From
the monotonicity there exist f and g such that f(x)=Ilim ¢(z,y) and
Yy——oc0

g(x)=lim ¢(x, y), and f(x)<¢(x, y)<g(x) for all x and y. Thus there
y—r+oo

is a set N of measure zero such that f(x)=g(x)=¢(z,y) for all x ¢ N
and for all y. By symmetry it now follows that ¢ must be constant.

A real valued function f(x,y) on RXR is said to be Schur-concave
if x+y=2'+y and max (v, y)>max (2, y') imply f(z, y)<f (@, ¥).

THEOREM 2.2. A test is unbiased size a if it is both similar and
Schur-concave.

ProoF. The power function f of ¢ is

F=| | 9@ o@—wo@—rzdy .

Then f becomes Schur-concave (cf. Marshall et al. [9], p. 296) so that
S(p, v)Zf(g+v,0) for g, v>0. Each f(z+v, 0) is also equal to the size
of ¢ since ¢ is similar. These complete the proof.

Since the constant test is always unbiased in any testing problem,
hence there is at least one unbiased test. Lehmann [7] (cf. also prob-
lem 7 of Chapter 4 in Lehmann [8]) discussed another testing problem
where the only unbiased test is constant. For —o0<e<0, let us con-
sider the testing problem H,(e): e<min (g, v)<0 against H,, the same
alternative as before. Note that H;(—oo) corresponds to the alterna-
tive hypothesis of Lehmann’s problem and H, to the null. By a similar
argument in Lehmann [7], it is easy to show that there is no non-
trivial unbiased test for the testing problem H,(e) vs. H, with —co <
e<0. Though our original null hypothesis H, is the limit of H,(¢) as
¢ tends to zero, we can give an example of non-trivial unbiased tests
by means of the Theorem 2.2. This is essentially due to Lehmann [7]
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who, of course, thought it similar but not unbiased in his problem.

1 if Zeaymy <y Y <Zitiso/md (2=0,-++, m=1)
(=, y)= .

0 otherwise
where 2., is the lower (i/m)x100% point of the standard normal dis-
tribution. This test ¢ has the size a=1/m and is similar. It is also
Schur-concave, and therefore it is unbiased. In this example the size
a is limited to e=1/m, m=2, 8,--- but it is easily extended to arbitrary
value of a by the randomization.

Consider the above test for m=20, the rejection region is divided
into 20 subsets, and the last one is of the form min (2, ¥)>2%uss. This
is nothing but the rejection region of the LRT of size 0.05. As the
rejection region of the above test is larger than that of the LRT, it
is uniformly more powerful than the LRT.

3. Admissibility

The following theorem gives a class of admissible tests which con-
tains the LRT. The admissibility of the LRT has been proved by Cohen
et al. [4]. Note that our proof is simpler than their proof.

THEOREM 3.1. Any nmon-randomized test ¢ whose rejection region is
of the form AXB or (AXB) tis admissible, where A and B are meas-
urable sets in R.

PROOF. Let ¢ have the rejection region of the form AxB, and
let ¢/ be better than ¢. From the continuity of the power function,
we have

Eoo¢=Eup¢" for p>0,
and
Ew,.y ¢=Eq. ¢’ for v>0.

Putting f=¢'—¢, similarly as in the proof of Theorem 2.1, we have
S f, é@x)der=0 ae. y,
and

S f@, »e(y)dy=0 ae. =x.

On the other hand, f is nonnegative on the sets A°XR and RXB° so
that f=0 a.e. on these sets. In the same manner we also have f=0
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a.e. on AXB. Therefore ¢’ is equivalent to ¢. It completes the proof
in the case that rejection region is of the form AXB. The proof for
the other case is clear. ,

Since the rejection region of the LRT is of the form A x B, we have

COROLLARY 3.1. The LRT is admasstble.

It would be interesting to note that tests with unreasonable rejec-
tion regions may be admissible. For example the test with size a given
by

1 if <z and y<z
¢(x, y)= .

0 otherwise
seems most unreasonable for testing H, against H,, where z is the lower
a'?%x1009% point of the standard normal distribution. However this
test belongs to the class of admissible tests in Theorem 3.1.

Farrell [56] presented an example of testing problem, due to L. D.

Brown, where all tests are admissible. Next proposition is motivated
by this example.

PROPOSITION 3.1. Let ¢ be any test and A=[(x,y): x>0, y>0,
¢'($, y)<11 Sb('—x: y)>0; ¢'(5!7; _y)>0, gb(—x, '—1/)<1]- If the Lebesgue
measure of A 18 positive, ¢ ts mot admissible.

PrOOF. Consider the following function

Sf(z, y)=sgn (x) sgn (y) min [¢(—2, ¥), ¢(z, —¥),
1_¢(m’ ?I); 1_¢(—x’ —7/)] ’

where sgn is the sign function. Simple calculations lead us to that the
value of G(z— p)p(y—»)+H—T—mH—Y—)—H&— E)pY— ) — Yz — pr)-
#(—y—v) is positive when 2,9, g, »>0 and zero when =0 or »=0.
From this, if the Lebesgue measure of A is positive,

Eqn £=| | £(2, 1)8@— wg(y—v)dady

is positive when £>0, »>0 and zero when x=0 or v=0. Clearly ¢+ f
is between 0 and 1 so that it is a test dominating ¢. It completes the
proof.

It is clear that any non-randomized test whose rejection region is
contained in the second or the forth quadrant and is symmetric around
the origin is inadmissible.
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4. Extension to exponential type distribution

A random variable X is said to be exponential type distributed if
it possesses a density function, for some finite measure 7, of the fol-
lowing type

fa(@)=c(p) exp (vd(p)) ,

where ¢(-), d(-) are real functions and satisfy

o)== (S exp (a;d(p))dr>—l .

Assume d is monotone increasing and continuous, which implies the
continuity of the inverse function d-!.

Let X and Y be independently distributed in the exponential type
distribution with parameters g and v, respectively. Then our problem
is generally formalized as testing H: min (g, v)=>b against H;: min (g,
v)>b for some b. Since d~!((b, )) is open, i.e. containing an interval,
it is clear from the completeness for exponential type distribution (cf.
Lehmann [8], p. 1382) that Theorems 2.1 and 3.1 hold true. Since the
exponential distribution satisfies the monotone likelihood ratio property
(cf. Lehmann [8], p. 68), the non-randomized LRT test is of the form
[a, ) x[a, o) for some a, that is, the LRT test is admissible.

Theorem 2.2 does not generally hold true, because we use, in the
proof of this theorem, the property that the simultaneous density func-
tion of (X, Y) is parametrized to preserve Schur-convexity (cf. Marshall
et al. [9], p. 296). But, after reparametrization of natural parameter
if necessary, some distributions are known to satisfy the property, e.g.
Poisson, gamma. Therefore, under these distributions, Theorem 2.2 is
valid, and hence the same test as in Section 2 is unbiased.
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