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Summary

Aki (1987, Ann. Inst. Statist. Math., 39, 457-472) develops a theory
of extending the test for symmetry about zero of a continuous distri-
bution function F. In this paper we discuss the same testing problem
in the case where the probability F'(0) of being negative is unknown,
which is assumed to be known in Aki’s paper.

1. Introduction

Aki [1] discusses an extension of the test for symmetry about zero
of a continuous distribution function F. F is usually called symmetric
about ¢, if it satisfies

1.1) F(c—x)+ F(c+x)=1 for all .

Let X,,..., X, be independent random variables with a common
continuous distribution function F, not necessarily symmetric, let @ (0<
a<1) be a given constant; and he considers testing for the hypothesis,

" H,: There exists a continuous distribution function G which is
symmetric about zero and satisfies

20 G(z) , if <0,

1.2 F(o)=
«2 ®) a+2(1—a)<G(a;)—%>, it £>0.

If «a=1/2, then H, reduces to the hypothesis of symmetry about zero
in the sense (1.1).

In this paper we consider testing for the symmetry in the sense
of H, assuming that « is an unknown constant. The hypothesis we are
going to test in this paper is thus,

HJ: There exist @ (0<a<1) and a continuous distribution function

G, symmetric about zero in the sense (1.1), which satisfy (1.2).
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In the next section we shall give a test statistic and its limiting
null distribution, and then prove that the test is consistent.

2. Extended test for symmetry

Let H be a continuous and strictly increasing distribution function
symmetric about zero in the sense (1.1). Considering Y,=H(X)) (i=
1,...,n) instead of X, (¢=1,.---,7m) as in AKki [1], the testing problem
of H{ is reduced to testing for the symmetry about 1/2 of the conti-
nuous distribution function F' defined on the unit interval (0, 1),

H}: There exist @ (0<a<1) and a continuous distribution function

G* defined on (0, 1) which satisfy

2 G*(2t), if 0<t5%,

F(t)=

et (l—a)(1—G*@2—2t), if %<t<1.

We give below a test statistic for H} and two theorems concerning it.
Let X,---, X, be independent random variables on the unit inter-
val (0,1) with the same distribution function F. Define

(2'1) 7h=I(0,1/2](X1) ("'=1; ct n) ’
(2.2) m=§‘, N and a="" ,
i=1 n

and put in the case 0<m<n,

f=y/ 128\ /I=M gnd Yi=2X,, i p=1,
a m
whereas

t=—V— = and ¥i=20-X), i 7=0.
l1—a n—m

Define for t € [0, 1]

)= S 6doo(¥), it 0<m<n,
and
u, (£)=0, if m=0 or m=n.

We consider as a test statistic for H/ a functional of u,,
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T.=sup |u.(t)] .
osts1

It is a natural substitute of the test statistic proposed by Aki [1] for
the case where a is a known constant.

THEOREM 2.1. If F satisfies H/, then w,(t) converges weakly to
W°(G*(t)) where W° denotes Brownian bridge.

PRrROOF. Assume that HY is satisfied. Then, 7,,---, 5, are independ-
ent with the same distribution

P(p=1)=a, P(p=0)=1—a,
Y,,---,Y, are independent with the same distribution
P(Y.=t)=G*(?),

furthermore (7,---, »,) and (¥,---,Y,) are independent. The distribu-
tion of m is binomial given by the expansion of (a+(1—a))".
We show first that {u,} is tight. For the purpose it suffices to
prove that there exists a constant C for which
(2.3) E [[u(8) — wn (00) [ | %0 () —%n () ]
SCG* ) —G*(t)) (G* (L) —G* ()

holds for any = and for any ¢, ¢, ¢, such that 0=t,<t<t,<1 (Billingsley

(2.
Put
(2.4) P (<Y.st)=G*({t)—G*(t)=p
and
(2.5) P(<Y.:st)=G*t)—-G*()=q,

and evaluate the expectation on the left hand side of (2.8), conditionally
upon a given m such that 0O<m<n. Then we have

(2.6) E [|un(8)—ua () Flun(te) —ua &)} | m]

== 3 B 66,0tk (V) eV kuua(¥:) | m]
The terms with 1=k, 1=Il, j=k or j=l may be ignored in the above
summation. Taking into account the fact that Y,..., Y, are independ-

ent with (2.4) and (2.5), and that (§,---,¢,) and (Y},---,Y,) are inde-
pendent given m, we have

@7 @6)=— 5 El&emipg+ ) E (66 ming
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+57 E[66,6lmpPe+ 3 B6k 66 mipe],
where > denotes the summation over all sets of different indices.
Now, for a given m such that 0<m<n, (3, -+, »,) is distributed
with equal probabilities over the set of (:;) points in the n-dimensional

space, where m of the coordinates are 1 while n—m other coordinates
are 0. Hence, if 1%k, we have

=y —1|m)=m—1)
P(’?t—ﬂk—llm)—m )

p—t y :0 p—t p—rl y — =—m(n—m) ’
P (=1, =0|m)=P (=0, . =1|m) nn—1)

By using the value of ¢£i¢; in each case we obtain
2.8 283 | ]= 2= P m(m—1) 2m(n—m)
@8 B(etetlmi= (220 nn—1) - nin—1)

m \!(n—m)(n—m—1)
+(n—m> m(n—1)

_ A-—B
T w(n—D)m(n—m) ’

putting
A=n*m(n—m) and B=m!+(n—m).

In the same way we have for different sets of indices that

, _ —A+2B
(2.9) E [§i€:8:Im]= nn—1)(n—2)mmn—m) '
— —A+2B
(2.10) E[&&,Eklm]— n(n—l)(n—Z)m(n-—'m) ’
and
(2.11) E [6:6,6.6|m]l= 3458

mn—1)(n—2)(n—3)ym(n—m)

In (2.7) terms of the types (2.8), (2.9), (2.10) and (2.11) appear
n(n—1), n(n—1)(n—2), n(n—1)(n—2) and n(n—1)(n—2)(n—3) times,
respectively, hence we have '
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@12) @N=—A"B pgy —A+2B (. an 84-6B .

n*m(n—m) n*m(n—m) n*m(n—m)
=W[W_m)(l—p—q+3pq)
—#—(—1+2p+2q—6pq)] .
nm(n—m)
Since
A — B . m (n—m)
nm(n—m) 1 and n'm(n—m) ni(n—m) nm =1

for 1=m<n—1, we have

(2.12)=p9(1—p—q+3pq| + | —1+2p+29—6pq]) .

As the expression in the parentheses on the right hand side is bounded
for

(2.13) p=20, ¢=20 and p+g¢=1,

so denoting by C its upper bound over the region (2.13) we have

(2.14) E [[%. (&) —ua (@) |%a(t) —ua (B | m]
=Cpg=C(G*(1)—G* () (G* (L) —G*(?))

In the case m=0 or m=n we defined u,(f) to be =0, hence (2.14) holds

trivially. Thus (2.3) is proved, establishing the tightness of {u,}.

Next we shall find the limiting distribution of the finite dimensional
random variable

(2.15) (Ua(t)s -+ -5 Ua (L))

for 0<t;<-+-<t,<1. Note that u,(0)=wu,(1)=0. First we deal with
the case k=2 and evaluate the limiting characteristic function of (u,(t,),

U (L) —Un (21))-

For a given m such that 0<m<n, m of 3’s are 1 and n—m of
n’s are 0, and (,---,7%,) and (Y,---,Y,) are independent; therefore
the conditional distribution of (u,(t,), %.(t;)—u.(t)) given m is the same
as the conditional distribution given

(2.16) P=cc=n,=1 and Pmpr ="+ =71,=0.

Assuming (2.16) we have
1 n—m m »
w0 =7 [V B a0 5 T )

and
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@)=t = = [V D L G-V T 5 L7
Put
P(0<Y,;=t)=p, P@E<Y;St)=q and P(<Y,<l)=r,
then we have clearly
p=0, ¢=0, r=0 and p+gt+r=1,
and the random variables defined by
U U U= (33 Lot (Fr 33 ks (E)r 3 Lgo(¥)))
and
Vi Vo 0=( 3 Tou®) 3 L@, 31 LX)
are independent with the multinomial distribution given by the expan-

sion of (p+q+7r)" and (p+q+7)"™, respectively.
Furthermore we have

(2.17) @)= (VI y - )

and

m

talt) =t () = (VI U {2 7)

hence we obtain the conditional characteristic function of (u,(t,), u,(t)
—u,(t)) given m as in the following,

¢n(0l! 02 l m)=E [exP {iﬂlun(tl)+i02(un(t2)_un(tl))} ] m]
=E [exp {4/1’;0,— o, n:nm (6,U,+6,U,)

— Vit 0] | m]
S = ]
x[pexp(}l;i_ A/ m 01>

n—m

+qexp ( ;% V. 0:)"‘7’]”—'“

n—m
=g (61, 0:| m)$> (0, O:|m) ,  say.
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Let an arbitrary £>0 be given, then by the central limit theorem
there exist >0 and a natural number %, such that for any n» satisfy-
ing n=n, we have

(2.18) P(nra—vnyr<m<net+vnyr)>l—c.

We shall show below that ¢,(6,, ;|m) tends, as n— oo, to a limiting
function ¢(4,, ;) uniformly in m for which

(2.19) na—vnr<m<nat+vnry

holds.
Note that (n—m)/m and m/(n—m) are bounded for = satisfying
n=n, and for m satisfying (2.19), and apply Taylor expansion to obtain

log ¢ (6, 0;|m)

=m log [1+p {exp ( J% Wﬁ,)—l}
vafere (20 )]

m

—m log [1+ B (p0, 4 g0)— 2 (poz+q0;)+0(n-w2)]

= ‘/@ (P0s-+q00) — 2= (003-+ 03— (00s-+0:))+-O(n ™)

and similarly,
log ¢3(6y, 6;|m)
=—iy —"i(nn_—m) (P0,-+00) — 2 (003+63— (PB,-+00:)) + O™ ,

uniformly in m satisfying (2.19).
Adding both equations side by side we get

Iog ¢, (0, 0] m)= —%(poz+qo;—(pol+qez)2)+0(n-m) :

from which it follows that
(2.20) &a(01, 0:| m)=¢(6,, 6;)+0(n""?) ,

uniformly in m satisfying (2.19), where we put
¢(6y, 6;) =exp [——;—(p0:+q0§—(p0x+qﬂz)’)] .

Therefore, if we take some integer m, such that n,=mu,, then the
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O(n~'%) term in (2.20) is less than ¢ in absolute value for any » such
that n=n, and any m satisfying (2.19), that is,

(2.21) |$a (01, 02| M) —(0y, 05)|<e .
Let

$n(01, 05)= ,éo <Z>a"‘(1—a)"""¢..(0n 0:lm)=3>'+>",
where 3 denotes the summation over all values of m satisfying (2.19),

while 33" denotes the summation over all other values of m. Taking
into account of (2.21) for 3} and of (2.18) we have

| — (0, 6)| <P (m—ma|Zvnr)+e<2e
and

|/ |<P (m—nalzvn7)<e,
therefore we get

|64 (01, 02)— (61, 0:)| <3e

for all n such that n=n,.
Thus we have proved

}»1_1.3 ¢ﬂ(0n 02)=¢(017 02)

for all 6, and 6,. ¢(8,, 6,) is clearly the characteristic function of (W °(p),
We(q)—W?°(p)), where W° denotes Brownian bridge. In particular it
has been shown that the variances and the covariance of the limiting
distribution of (u,(t,), u.(t;)) coincide with those of (W°(p), W°(q))=
(W2(G*(t)), W (G* (%))

By using a similar argument we can find the limit of the charac-
teristic function of

(2.22) (Ua(B1)s Ua(t)— Un(tr), + + + 5 Un(B) — Un(Ee—r))

for any k and any ¢,---,t, such that 0<{,<---<t,<1, and we can see
that it is of the form

exp [—-%-(qUadratic form in 0’5)] ,

which shows that the limiting distribution of (2.22) is k-variate normal
with zero means. Since the variances and covariances of the limiting
distribution of (2.15) have been already shown to coincide with those of

(2.23) (We(G*(ty)), -+, WO(G* (L))
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the limiting distribution of (2.15) is proved to be that of (2.23).
The proof of Theorem 2.1 is thus completed by Theorem 15.6 of
Billingsley [2].

By Theorem 2.1 the limiting distribution of T, is given by
lim P (T,<2)=P (sup |W°()|<2)=1+2 > (—1)te> .
n—o 0sts1 o

See Billingsley [2], p. 85.

We prove next the consistency of the test given by the critical
region T,=c for any constant ¢. We give a proof of a slightly differ-
ent character from that of Theorem 3.2 in Aki [1].

THEOREM 2.2. If a continuous distribution function F defined on
(0, 1) does mot satisfy H{, then P (T,=c) converges to 1 for any constant
¢, provided that 0< F(1/2)<1.

PrOOF. Put a=F(1/2) (0<a<1l) and define for any ¢ such that
0st<l,

G;"(t):%F(-é—) and G;(t):i_i_a@—zr@—_é_)),
then we have
Gft)=P (Y:st|n=1) and G¥@)=P (Y.=t|n=0).
By the assumption of Theorem 2.2 there exists ¢, such that
0<t,<l and G¥(t)#G¥(t) .

Put G¥(t)=p, and G¥(t)=p:.
As (2.17) in the proof of Theorem 2.1 we have

n(t)=— (VU ),

where m is defined by (2.2) and is assumed to be 0<m<n. For a given
m, U, and V, are independent random variables with the binomial dis-
tribution given by the expansion of (p,+(1—p,))™ and (p.+(1—p))* ™,
respectively. Hence we have, if 0<m<n,

E [u,(t;)| m]= «/Mm—m

and

V [ (o) | m] == p,(1—p) + 2 py(1—3)
n n
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If m=0 or m=mn, we have clearly
E [u,(t) [ m]=V [u,(t) [ m]=0 .

Since ¥m(n—m)/n® is the sample standard deviation calculated from
Ny **y Pa, its mean and variance are derived from the formulae given
in Cramér [3], p. 353. Using the results we have

E [u.(t)]=E E [u,(t) | m]= Vna(IT—a)(p,—py) (1+0(n)
and

V@)=V E [w.) [m]+ BV [w, () [ m]

=(5-all—a))@i—pr+1-ap(1-p)

+ap,(1—p,)+0(n™)
=0(1) .

By p,—p,#0, |E[u,(t)]| tends to infinity whereas V [u,(t,)] is bound-
ed as n—oo; therefore by using Tchebychev’s inequality we have
P (u.()|=¢c)—1 for any c¢ so that

lim P (T,=¢)=1lim P(sup |u,(t)|=c)=1,
0sts1

n—oo n—oco

completing the proof.
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