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Summary

This paper is concerned with an extension of the problem of test-
ing symmetry about zero of a distribution function. In order to obtain
the asymptotic null distribution of test statistics for the problem, a
limit theorem is proved, which indeed plays an essential role in the
asymptotic theory of testing problem for symmetry.

1. Introduction

Let X, X,,---, X, be independent random variables with a common
distribution function F. F, denotes the empirical distribution function
of the variables X, X;,--+, X,. The problem of testing F' for symmetry
about zero was investigated by several authors. In particular, Butler
[3] and Rothman and Woodroofe [5] proposed test statistics based on
the empirical distribution function. The statistics are

V'n sup | Fy(@)+ Fo(—2)—-1|

and
n|” F@+F(-9-1rdF @),

respectively.
The essential part of deriving the asymptotic null distributions is
to show that the stochastic process

converges to a Gaussian process.

In Section 2 we shall prove a limit theorem which enables us to
consider a general testing problem for symmetry, which includes the
above problem as a particular case.

Key words and phrases: Wiener process, empirical distribution, goodness-of-fit test, test
for symmetry, weak convergence.
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Let 0<a<1 be a given constant. In Section 3 we shall study the
problem of testing F' for the hypothesis,

H,: There exists a continuous distribution function G which is

symmetric about zero and

24G(x) if #<0,

Flz)= a+2(1-—a)<G(:v)-—-—;—> it >0,

holds.
If we set a=1/2 in the hypothesis H,, then H, means that F is sym-
metric about zero. Therefore we can regard the hypothesis H, as a
natural extension of that of symmetry. In Section 4 we shall give an
interpretation of the value a in a concrete example. Further more
general problems will be discussed, which may be called tests for local
property of a distribution function rather than those for symmetry.

2. Asymptotic behavior of a stochastic process

Let G, be a distribution function on [0,1]. Suppose random vari-
ables Y,,Y,,---,Y, are independent and have a common distribution
function G,. Let &,¢&,,---, ¢, be random variables. We assume also
that (Y;,---,Y,) and (&,---, £,) are independent. We define a random
element of D[0, 1] by

U)=—= 5 bukua(¥), 0SS,

where I,(-) denotes the indicator function of the set A.

THEOREM 2.1. Suppose the random variables &, &, -, &, are inde-
pendent and identically distributed with mean 0 and variance 1. Then
the random element w,(t) converges weakly to W(G,(t)) in D[0,1] as n—
oo, where W(t) ts a standard Wiener process.

ProOF. We first prove the theorem under the assumption that
G,(t)=t. For any given numbers a;,---,a, and 0=t,<---<¢t,<1, the

central limit theorem yields that ,ﬁ a;u,(t;) converges in law to ﬁla,-
=1 =
W(t,), since

E¢, jﬁ;l a'jI[o,tj](Yt)=0
and

m 2 m m
E (63 0, hon(¥) =3 S a,a,tAL) -
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Then we can see the convergence of the finite dimensional distributions
of u, by Cramér and Wold’s theorem. Let us now show that {u,} is
tight. For that, it suffices to prove that

2.1) E{u.®)—u@)P-|ualt) — @O} sC:—t), 0st<t<t,<1.

Since
00—t ()Pt () — ta (O =5 (33 €K (¥ (35 &, K (V)
n n\U1 n\V2 n nt \i=t 140,00\ 4 = JEC NS g
and the independence of ¢’s and Y’s, the left hand side of (2.1) is
2la-t)t—1),

and hence (2.1) follows. Then the theorem holds under the assumption
that G,(t)=t.

Suppose now that G,(f) is an arbitrary distribution over [0, 1]. Let
71 Moy * * +» 7, D€ independent uniformly distributed random variables over
[0,1]. We further assume that {7} and {¢} are independent. Then
the distribution function of G;'(3,) is G,, where G;!(s)=inf {¢t: s<G,(t)}.
Since the theorem involves the law of u,, we may write Y,=Gi'(5,).
We define

Valt)=—= 33 &)
Then V,(t) converges weakly to W(t) in D[0, 1] by the fact we already
proved. Note that u,(t)=V,(G,(t)). If we regard the time change by
G, as a function from D[0, 1] to D[0, 1], the function is continuous on
C[0,1] (cf. the proof of Theorem 16.4 of Billingsley [2]). Hence the
theorem is now proved by Theorem 5.1 of Billingsley [2] and the fact
that Wiener measure has its support on C[0, 1].

In passing, we shall show a more general result about u, when
Y, Y, ---, Y, are independent and uniformly distributed over [0, 1]. Let
us define a random element of D([0, 1]*) by

[ns]
@.2) a8, t)=717721 tLo(Y), 0ss, t<1,

i=
where we denote, by [a], the largest integer not exceeding a.

THEOREM 2.2. Suppose Y,, Y;,---, Y, are independent and uniform-
ly distributed over [0,1]. Let &, &,,---, &, be independent and identical-
ly distributed with mean 0 and variance 1. Suppose further that (Y,
-e+, Y,) and (&, -+, &,) are independent. Then the random element u,(s,t)
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defined by (2.2) converges weakly to B(s,t) in D([0, 1]*) as m— oo, where
B(s, t) is a Browntan sheet, i.e., a zero-mean Gaussian field on [0, 1]
with the covariance structure

E B(sy, ) B(83 t2) =(81A8:) - (L ALy)

PrOOF. We first show the convergence of finite dimensional dis-
tributions of u,(s,t). Suppose we are given m points (s;, &), +, (S, tn)
in [0, 1]*. Without loss of generality we assume that 8 <8<-.--<s,.
For any given real constants a,, as,- -+, a,, we consider the distribution

of % a,u,(s;, t;). Note that
m [ns,]
(2.3) j?‘:l a;Un (8, t1)=71—W“ 12___11 Et(a'lI[o,tlj(Yt)'i' cee +a'mI[0,tm](Yt))
[nsy)
53 Eu(@adin iy (V) + -+ Ty (V)

1
+ 4/% i=[ns;]+1

[ns,,]
oot S k(YD)
m—1

Since all terms of the right hand side of (2.3) are mutually independ-
ent, the central limit theorem implies that (2.3) converges in law to
the normal distribution with mean 0 and variance

@4 833 enbAL (=8 3 3 an AL

+ e +(sm_sm-1)a’3ntm .
It is easily checked that (2.4) is equal to

(2.5) saiti+2a,8, :‘-’jz a, (L AL) +s:a3ty+2a,8, :‘Ea a, (s AL
+ tee +sm—la’?n—ltm-—l-’f'zam—lsm—lam(tm—l/\tm)+sma'3utm .

It is also easily seen that the variance of jf‘, a,B(s,, t,) is equal to (2.5).
=1

Therefore finite dimensional distributions of u,(s,t) converge to those
of B(s, ).

Next we shall prove that {u,(s, t)} is tight. For that, we shall
check the moment condition for increments of u, about all neighboring
blocks.

Case 1. For s,<s=<s, and t,<t, we consider the neighboring blocks
B=(3“ s] X(tl, t]

and
C=(8, 8] X (&, t] .
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The increments of u, about B and C are respectively written as

U (B)=U, (81 1) — U (81, ) — U, (8, t)+U.(S, 1)

1 [ns]
= vyn s—[§]+1 e‘I(tl't](I") !
=[ns,

and

1 [nsg]
un(c)=_ 2 EtI(tl,z](l,t)-
n i=[rsl+1

Then we have
(2.6) E ui(Byui(C))=Eui(B)Eui(C)
=L (s - s et (Ers)— s ¢t

If s;—s,=1/n, then [ns;]—[ns]<2n(s;—s,). If s,—s8,<1/n, then at least
either [ns]=[ns;] or [ns]=[ns;] holds and hence the left hand side of
(2.6) vanishes. Therefore we have

E (ua(B)uz(C)) s 4(s,—8)' (t—t)* .
Case 2. For s,<s and t,<t<t,, consider the neighboring blocks
B=(8;, 8] X (¢, t]
and
C=(s, 8] X (¢, t5] .

Then the increments of u, about B and C are respectively written as

_ 1 (ns]
un(B) _—ﬁ i=[§1]+l etI(tl,t](I’t) ’

and

_ 1 [ns]
u(C) “Vn t=[§:'1+1 Elaea(Y9) -

In this case we have
[ns] [(ns] [ns] [ns]

@7 E@i(Bui(C)=—1-

MY i=[na+1 J=(n8,1+1 k=(na,]+1 L=(ns,]+1

XE 6868 s (0 ey o)V e ()
1 2
=72- #}__,; E f:Ial,z](Y,).E ejL‘!‘g](Yj)
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= ([ns]—[na.)) ([ns] — [na]— 1) (¢~ t) (1) -
If s—s,=1/n, then [ns]—[ns;]<2n(s—s,) and we have
2.8) = ([ns)—[ns.])([ns] — [ns ]~ DS 4(s—s,)'

If s—s8,<1/n, then at least either [ns]=[ns,] or [ns]=[ns,]+1 holds and
the left hand side of (2.8) vanishes. Thus it holds that the left hand
side of (2.7) is not greater than

4(s—s8y)' (t—1t) (L—t) S 4((8—81) (B —t1))* .
Consequently we have, for any pair of neighboring blocks B and C,
E ((min {|u.(B)|, |4 (C) D) S E uz(B)uz(C)=(2¢(BUC))*,

where g denotes Lebesgue measure on [0, 1]°. This completes the proof
by Theorem 3 of Bickel and Wichura [1].

3. A testing problem for symmetry

Suppose that G, is a continuous distribution function which is de-
fined on (—oo, o) and symmetric about zero. Let 0<a<1 be a given
constant. We assume that G, satisfies the hypothesis

H,: There exists a continuous distribution function G which is

symmetric about zero and

20G(x) if =<0,

Gu(m)= a+2(1—a)(G(a:)—%> if #>0,

holds.

Let X be a random variable with distribution function G, and let
H Dbe a continuous and strictly increasing distribution function which
is symmetric about zero. If we set Y=H(X), then Y is a random
variable on (0, 1) with the distribution function,

2G(H-(t)) if 0<ts% ,

P(Y<t)=

a+2(1——a)(G(H"‘(t))—-;—> if -;—<t<1.

Now we consider, for a distribution function F' defined on (0, 1), the
hypothesis
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H,: There exists a continuous distribution function G* defined on
(0, 1) such that

oG*(2t) if 0<t_s_%,
F(t)=
a+(1—a)(1—G*2—2t)  if -;—<t<1,

holds.

Then the distribution function of Y satisfies the hypothesis H,. This
is easily seen by putting G*(t)=2G(H™(¢/2)).

Conversely, let X be a (—oo, o0)-valued random variable with a
distribution function G,. Let H be some continuous and strictly in-
creasing distribution function which is defined on (—o0, ) and sym-
metric about zero. Now we assume that the distribution function of
Y=H(X) satisfies H;. Then we shall show that G, satisfies H,. Note
that

G,(2)=P (Y= H(x)) .

Hence we can write, for a continuous distribution function G* defined
on (0, 1),

o «G*(2H(z)) if <0,
)= et+(l—a)(1—G*(2H(—x))) if #>0.
If we set
-;—G*(ZH(x)) it z<0,
G**(w):
—%G*(zﬂ(—x)) it £>0,

then G** is symmetric about zero and

20G** () if <0,

Gy(x)= a+2(1—a)(G**(¢)——;‘> if x>0,

holds.

Consequently, without loss of generality, we consider the testing
problem whether a distribution function on (0, 1) satisfies the hypoth-
esis H,.

Let X, X;,---, X, be independent random variables having a com-
mon continuous distribution function F' on (0,1). We define, for i=
1, oo, M,
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2X, it X<t
Y, =
20-X) i X>%,
1=e if X<l,
a 2
§i= )
a
- f X>—,
\/ l—a ' > 2
and
1 n
(3.1) un(t)='ﬁ_ E §idyo, (YD) 0o=st=sl1.
Let us consider testing hypothesis H, by the test statistic
(8.2) T,=sup |u, ()| .
0sts1

THEOREM 3.1. If F satisfies the hypothesis H,, then T, converges
weakly to T=oss‘¢1£ | W(2)|.

Proor. For every 7 and 0<t<1, we see

1

P (Y,<t)=P (xst, X,s-2—)+P (Y,st, X>-;-)

—p (Xé_;_) +P (th1—_;.> — aG*(t)+ (L—a)G*(2)
=G+@),

P (e,=\/1:" )=P(Xs1)=c.

On the other hand, it holds that

P (a:\/lzﬁ, th):? (Yét, Xé%):P (X,g%):::G*(t) :

Then we can see that & and Y, are independent and of course we have
that (¢,,---, &,) and (Y},---, Y,) are independent. Further it is easy to
see that &, &,,---, &, are independent and identically distributed with
mean 0 and variance 1. Thus &’s and Y’s satisfy the assumptions of
Theorem 2.1. Therefore we have by the theorem that the process w,(t)
defined by (8.1) converges to the process W(G*(t)) in D[0,1]. Then the
theorem follows since G* is a continuous distribution function on (0, 1).

and
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The asymptotic null distribution is the same as that of Butler’s
statistic. The distribution function of T is given by

_ 11:2(2k+1)2}
8u? ’

4 3 (1) {
7 & 2kl P
(cf. e.g., Feller [4]).
For a level a;, we adopt the set (¢, o) as a critical region, where
¢, is determined by P (7' >¢))=a,. Then the test is consistent, that is,
the next result holds.

THEOREM 3.2. If F does mot satisfy the hypothesis H,, P (T.>c)
converges to 1 for every c¢>0.

ProOF. First, we show under the assumption that F(1/2)=a’+#a.
Note that

t()=— 316,
and
Eé=——t  (—a)#0.
Ya(l—a)
Then

P (u.(1)|>¢)—1

follows by the law of large numbers.

Next, we prove under the assumption that F(1/2)=a. Since F does
not satisfy the hypothesis H,, there exist two continuous distribution
functions G* and G** on (0, 1) such that

G* +* G**
and

oG*(2t) if 0§t§%

F(t)=
at+(l—a)(1—G**2—2t)  if %<t§1

holds. We define
Fi()=— 3 Loy(Y0) Losn(X)

an i=1

and
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n

0= g 2 Ton(F) Tann(X) -

Then we can write

e W O=V B (FLO—F () -
Noting that
Fi()—F()=(F: ()—G*@®)— (F2 () —G*@)+(G* () —G** (1)) ,
it suffices to prove
3.3) sup | K (8)—G*(®)| -0
in probability and
(8.4) sup | (%) —G¥*(t)|—0

in probability. We denote by F, the empirical distribution function of
the variables X, X,,---, X,. We define

oF (20) it ogtg_;_,
G.(t)=
aF () +(1—a)(1—F2@—2t)  if —;—<t§1.

Then we can easily see that

G, () if ogt_s_%.
(3.5) F(t)=
G, (t+)—a(F}(1)—1)  if %<t§1.

From the Glivenko-Cantelli theorem, it holds that
(3.6) sup |F,(t)—F(@)|
osts1/2
converges to zero in probability. By (8.5), (3.6) can be written as
a-sup | F} (t)—G*(t)|
0sts1
and hence (3.3) follows. If 1/2<t<1, we have from (3.5)
F,t)—Ft)=(1—a)(G**(2—2t)— F}(2—2t+))+a(F,(1)—-1) .
Then we have

sup | Fi2(t)—G**(t)|= sup |G**(2—2t)—F;}(2—2t)|
osts1 1/2<ts1
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sup |F,(t)—F(t)|+—"—(F}(1)—1) .

=
1—a 12<tst l—a

Therefore (3.4) follows from the Glivenko-Cantelli theorem and the law
of large numbers. This completes the proof.

We have been considering testing the hypothesis H;, with the sta-
tistic T, defined by (3.2). However, we can take another statistic for
the problem. For example, we can take

Ti={ wOrdE®,

where u, is the same as (3.1) and H,(t) is the empirical distribution
function of the variables Y;, Y;,---,Y,. The asymptotic null distribu-
tion of T, coincides with that of the statistic proposed by Rothman
and Woodroofe [5]. It can be proved in almost the same way as Theo-
rem 2 of Rothman and Woodroofe [5] by using Theorem 2.1.

4. Remarks

First we shall give an interpretation of @ in the problem of Sec-
tion 3. Suppose that Z,, Z,,--.,Z,,--- is a sequence of independent
random variables with common continuous distribution function G, de-
fined on (0,1), which is symmetric about 1/2. We assume that we
observe Z; with probability g for overlooking when Z,>1/2. To be
precise, we assume that there exists a sequence of independent and
identically distributed random variables I,, L,---, I,,- -+, where

1 with probability B,
0 with probability 1-5.

I=

We also assume that Z’s and I’s are independent. Suppose that we
can observe Z, if and only if (Z,<1/2) or (Z,>1/2 and L,=0). Let X,
X3y+++y X,y -+ be a sequence of observations in the above situation.
Then X, X;,---, X, are independent identically distributed random vari-
ables with the following distribution function F. If 0<x<1/2, then
we have

41) F(z)=P(X,=2)=P (Z,;<2)
+P (zl>-;-, L=1, %5s)
+P <Zl>'%'y Il=1) Z2>—;', Iz=1, Zaéﬁ?)

G e
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=Gy(@) 3 (%)': Gy() .

2
2—-8
If 1/2<2<1, then
1 1
P( <X,Sa:)_P(Z1>2 L:O,Zlgx)
1, 1,
+P (zl>—, L=1, Z>L, L=0, zzgx)
2 2
+...
—1—ga.( (B ( __1_)
=a-5-(3 () (6@-3) -

Hence, if 1/2<x<1, then

1-8 _1
4.2) Fa)=5* ,9 +2.5=4 (G,(x) )
From the symmetry of G,, the right hand side of (4.2) can be written as
1 1-8(1
#3) st (3-G1-9)

If we put a=1/(2—p) and G*(t)=2G,(t/2), then F satisfies the hypoth-
esis H, from (4.1) and (4.3).

Consequently, we may consider in this situation that testing the
hypothesis H, means testing whether the distribution function of the
hidden variable Z, is symmetric about 1/2. In the case, a is determined
by B, and G* is determined by the distribution function of the hidden
variable Z,.

Next we remark on an alternative approach to the problem in
Section 3. It is easily seen that, if a distribution function F satisfies
the hypothesis H,, then

(1—a)F(x)+aF(—x)=a, for 2<0,

holds. In fact, the statistic T, defined by (3.2), when the observations
are supposed to be transformed to (0,1) by a continuous and strictly
increasing distribution function which is symmetric about zero, can be
written as

(4.4) vn ™ Sup (1—a)F,(x)+aF,(—2)—a)| .

— e
va ( a)
Therefore, of course, as in the proof of the theorem of Butler [3], we
can derive the asymptotic null distribution of (4.4) directly using the
fact that +n (F,(t)—F(t)) converges weakly to A(F(t)), where 8(t) is a
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Brownian bridge. It is indeed not so hard to see that the asymptotic
null distribution can be represented as

7 S | VI=aR e p(1- 22|
and that the process v1—apg(t)+(e/v1—a)f(l1—((1—a)/a)t), 0<t<a is a
standard Wiener process. We, however, think that our approach in
Section 3 is not only much simpler than the direct calculation but also
giving an intuitive explanation why the asymptotic distribution of the
statistic can be represented as a function of a standard Wiener process.
We lastly give three typical examples as applications of Theorem
2.1. They may be called testing problems for local property of a dis-
tribution function rather than those for symmetry. ‘

Example 1. Let X, X,,---, X, be independent random variables
having a common continuous distribution function F on (0,1). Let 0<
2<1 be a given constant. Suppose that ¢ is a strictly increasing, con-
tinuous mapping of [1/2,1] onto itself. We consider the statistical
hypothesis

H,: There exists a continuous distribution function G* on (0, 1)

such that

oG*(2t) if 0<t§-;—,
F(t)=
a+(l—a)(1—G*@—20(2))  if %<t<1,
holds.
We define, for i1=1,.--, n,
2X, if Xté%,
Y‘=
21—p(X))  if Xo%,
and
1—ea if x<l,
a 2
$¢=
a . 1
- £ x>1,
l—a ! ¢>2

Similarly as in the proof of Theorem 3.1, we can see, if F satisfies the
hypothesis H,, that the distribution function of Y, is G* and that ¢’s
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and Y’s are independent. Then Theorem 2.1 is applicable and we ob-
tain the asymptotic null distribution of T, defined by (3.2).

Example 2. Let X’s be the same as in Example 1. For simplicity
we further assume that F is absolutely continuous with respect to
Lebesgue measure. Let f be the density of F. Let 0<¢,<e,<1—¢;<1
be given numbers. We consider the statistical hypothesis

H,: f satisfies the relations

f)=,(1-1) if 0st=e,

f)=f(e;+e.—1) if e<t< crgcz ,

fO=fA—c+e,—t) if czgtgiz%ﬂi.

We let
Al=[0’ 01)
A= % c2>
A= _02, ——-————1—621_‘_62 )
A5= -1——(;—*_&’ 1'—01>
and

Ay=[1—c, 1] .

If we define, for =1, 2,---, n,

{

'——Xi if X‘ € Al y
¢
2 .
(X'i—cl) lf X‘ € Az ,
02‘—‘01
2 .
(e— X)) if X,eA,,
C;—Cy
4.5) Y.=
2 (Xi—e) it XA,
l—c¢—c
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2 (1-e-X) if Xied,,
l—c,—oc,

%(1—)(,) if X.cA,,
1

and
1 if X,e AJUA,UA,,
-1 if X, e A;JUAUA,,

&=

then Y’s and &’s satisfy the assumptions of Theorem 2.1 and hence we
can obtain the similar result as Theorem 3.1 on the statistic T,.

Example 8. Let X’s, ¢, and ¢, be the same as in Example 2. We
also assume that F is absolutely continuous. f denotes the density of
F. Let ), a;---,a; be positive constants such that a;+a,+---+a;=1.
We consider the statistical hypothesis

H,: f satisfies the relations

af()=a f(1-1) if 0=st=¢,

a ft)=arf(c;+c,—1) if ¢<t< 01-;-62 ,

& f@)=a,f(l—cite,—t)  if czgtg%*“,

0=F(c) , a=F(4t%)_F),
| a=F(e)-F(2te), a=F(2=0%L)_F@),

a5=F(1—cl)—F<%) . @=1—F(l—c,),

and further for every 0<t<1,
Grt)=G¥(t)=G*(t)
hold, where

G;"(t):a%F(clt) ,

GH(t) =ai2(F (et )~ Fa)

and
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G:(t)=%(F(cz+l%C&t)—F(cz)) :

We let A, A;,---, A; be the same as those of Example 2. We define
Y, by (4.5) and

where

c-— if X, €A,
a
1 .
Co— lf X{EAz,
a
—O'L if X‘EAs,
4%]
E‘=<
o L if X.eA,
Qy
—e- L if XA,
Qs
—_e- L if Xed,,
1]
c= 1 1 1 .
S —
a; 473

Then it is easy to see that Y’s and &’s are independent and that, for
every 1=1,---,m, & has mean 0 and variance 1. Hence we can obtain
the asymptotic null distribution of T, by using Theorem 2.1.
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