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Summary

For a unimodal distribution relations of its mode a with its ab-
solute moment B, and central absolute moment y, of order p are con-
sidered. The best constants A, and B, are given for the inequalities
la|<A,B/7 (p>0) and |a—m|<B,ry? (p=1) where m is the mean. The
results follow from discussion of more general moments.

1. Introduction

Let g be a unimodal distribution with mode a and let 8, be its
absolute moment of order p>0. It is shown in Sato [4] that there is a
constant A, such that

L.1) lal< A,

When g has finite mean m, the central absolute moment of order p=1
is denoted by 7,. It is also shown in [4] that there is a constant B,
for p>1 such that

(1.2) la—m|<B,r;” .

Here A, and B, are constants depending only on p. The latter is an
extension of a result of Johnson and Rogers [3], who give (1.2) for
p=2 and prove that B,=+/3 is the best constant. This result for
p=2 is rediscovered by Vysochanskii and Petunin [5]. By monotonicity
of 74/» in p, the existence of B, for some p=p, implies its existence
for any p=p,. We can make a similar assertion for A, by monoton-
icity of By? for p>0. But the case of small p is interesting, since
there are many unimodal distributions that have absolute moments of
order p only for small p. For example stable distributions of exponent
a (0<a<2) are unimodal and have absolute moments of order p only
for 0<p<a.
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In this paper we will present a new proof of (1.1) and (1.2) and
give the best constants. We will show that

1.3) B,=(p+1)*

is the best constant in (1.2) for p=1 (now the case p=1 is included)
and that the best constant in (1.1) for p>0 is the unique solution of
the equation

(1.4) 2 —(p+1)x—p=0

for >1. Thus A,>(p+1)"” for p>0; A,=2, A,=1++2, and, approx-
imately, A1/2=2.81451.

Given a function g on the line, we call the integral Sg(x),u(dx) the
g-moment of p, and Sg(x—m),u(dx) the central g-moment of x. We

will give inequalities involving modes and g-moments of unimodal dis-
tributions. The bounds (1.1) and (1.2) are extended to more general
moments.

2. Modes and g-moments

A distribution g is called unimodal if there is a point a such that
the distribution function of g is convex on (—oco,a) and concave on
(@, ). The point a is called a mode of x. If g is unimodal, then the
set of modes of 4 is either a one point set or a closed interval. Write
the restriction of p to an interval I as p|,. A distribution g is uni-
modal with mode a if and only if p|_.. is absolutely continuous with
nondecreasing density and gl|,., is absolutely continuous with nonin-
creasing density.

Let g(x) be a nonnegative continuous function on the line such that
g(x)=g(—=) and g(x) is increasing for 2>0. The words increase and
decrease are used in the strict sense.

THEOREM 2.1. For every a>0, there is a unique point ¢ satisfying
0<c<a such that, if p is a unimodal distribution with mode a, then

@1) [ s@)udnz@+o | o@ya .
The point c is the unique point satisfying 0<c<a and
(2.2) g(c)=(a+e)™ S_ g(x)dz .

Equality holds in (2.1) if and only if p is the uniform distribution on
[—e, a].
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ProOOF. Denote the Lebesgue measure on the line by 2. Let a>0
and let ¢ be a unimodal distribution with mode a. We estimate the
g-moment of g from below in three steps.

Step 1. Let a=p(— o0, —a]+p[a, ) and let
1= ptle-a,0 0@ 2,0 -

Obviously, g, is a unimodal distribution with mode a. Since g is even
and increasing on the positive line, the g-moment of g, is smaller than
or equal to that of x. If g+ p, then they are not equal.

Step 2. Let p=p(0, a) and let

2= pt1c—a,00+ BA A c0,0 -

Again this is unimodal with mode a. Let fiy(x) be the nondecreasing
density of g on (—a,a). If f, is flat on (0, @), then py=p,. If £i(0+)
<fi(@a—), then, noting f,(0+)<pa'<fi(a—) and choosing 0<a’<a that
satisfies fi(a'—)=<pa'<fi(a’+), we have

[, (o'~ fi@dn={, (fi@)—pa)da
and
[, s@) (o~ si@Nda< || oa)(fi(@)—pa)z

which implies that the g-moment of g, is smaller than that of g,.

Step 8. Let y=p(—a,0) and b=yp'a. Then, 0<b=<a. Let p=
Ba'Al_s.0, the uniform distribution on [—b,a]. Now

(2. [ @mdn < | g@pmd)

because, letting fix) be the nondecreasing density of p, on (—a,a),
we have

", (o= —fiado={ " fiwda
and

[, o) (pa ~ fioda | ota) )i -

-a

Strict inequality holds in (2.3) if g u,.
Now define, for fixed a,



410 KEN-ITI SATO

o®)=+0)* | gl@da .

The above three steps show that

| s@)udn)zo®)

for some b in [0,a]. Here b depends on yg. Strict inequality holds un-
less x is the uniform distribution on [—¥’, @] for some b’ €[0,a]. As b
moves on [0, a], the function ¢(b) takes the minimum at a unique point
c. In fact, ¢'(b)=(a+b)*¢(b) where

#0)=a+b)(-b—|" s@dz=" @0 —g@)dz—{ @@)—g0))dz,

and ¢(b) is a continuous increasing function with ¢(0)<0 and ¢(a)>0.
The point ¢ is the unique point such that 0<c<a and ¢(c)=0, which
is equivalent to (2.2). The proof is complete.

Remark 2.1. Define k(a) for a>0 by k(a)=c in Theorem 2.1 and
k(0)=0. We see that, if ¢ is unimodal with mode @, then

| s@u@nzg(al) -

Let M=sup g(x)<o. The equation (2.2) shows that

|-, 00— g(adw={" (g() —g(c))ds

As a increases, ¢ must increase in order to satisfy this identity. That
is, k(x) is increasing in . Now it is easy to see that k(z) is a contin-
uous increasing function from [0, o) onto itself. Hence g(k(x)) is a
continuous increasing function from [0, o) onto [g(0), M). Let x=h(y)
be the inverse function of y=g(k(x)). If g is unimodal with mode a,
then

alsh( | o(@)uda)) .

For every y=g(0), h(y) is the supremum of modes taken over all uni-
modal distributions that have g-moment y. In fact, for x=h(y), the
uniform distribution on [—k(x), ] has g-moment .

3. Modes and absolute moments of order p>0
The preceding theorem has the following consequence.

THEOREM 3.1. For p>0, let A, be the unique solution of the equa-
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tion (1.4) in (1, ). If p 18 unimodal with mode a, then
(3.1) lel=A,8;",

where B,,:Slxl",u(dx). Equality holds in (3.1) if and only if p and a

satisfy ome of the following :

(i) a=0 and p 18 the 3-distribution at 0;

(ii) a>0 and p is the uniform distribution on [—alA, a];
(ili) a<0 and g is the uniform distribution on [a, —a/A,].

PROOF. Let a>0. It is enough to prove the theorem in this case.
Let g(x)=|z? in Theorem 2.1. Then

S |zfPu(de)=c?,

where ¢ is the unique solution of the equation
(a+c)e?—(p+1)~ (@' +c"*)=0

for 0<c<a. We see that 1/A, is the value of ¢ for a=1. The value
of ¢ for general >0 is c=a/A,. Hence we obtain (3.1). Equality holds
in (3.1) if and only if (ii) holds, as Theorem 2.1 says. The proof is
complete.

Remark 3.1. Let A be the unique positive solution of the equation

(3.2) zlogr—x—1=0.

The constant A, decreases as p increases, and

3.3) limA4,=4A, limA,=1.
»lo Ploo

It is easily seen from (3.2) that e<A<2. An approximate value is
A=38.59112.
In fact, let a>0 and let 0<p<p'. We have

lal= 4,87 <A, B

unless u is concentrated at a (see Hardy et al. [2], p. 167). Choose g

to be the uniform distribution on [—a/A4,,a]. Then a=A,8/”. Hence

we have A,<A4,. If lirm A,>1, then 1—(p+1)A;?—pA;?'=0 leads to
Ploo

a contradiction. Therefore 4, tends to 1 as p{oco. If we fix £>1 and
let p decrease to 0, then

2?* —(p+1)z—p=p(z log 2—2—1)+O(p*) .
Hence, if 1<x<A, then z?*'—(p+41)x—p is negative for small p; if
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x> A, then it is positive for small p. This shows that lim A,=A.

plo
Remark 3.2. If the integral Sloglx] p#(dx) exists, the geometric
mean g of ¢ is defined by

g=exp S log || p(de) .

If p is unimodal with mode a and Slog|x|p(dx)<oo, then

(3.4) la|<Ag,

where A is given in Remark 3.1. In fact, if g has finite 8, for some
»>0, then B/” tends to g as p| 0 (see [2], p. 1566) and we have (3.4)
from (3.1) and (3.3). If x has infinite g, for every »>0, then consider
/. defined by

pn=ﬂl(—n,n)+anam ’ an=ﬂ('—°°9 _n]'l'ﬂ[nr °°)

and note that the geometric mean of g, tends to g as n— oo.

4. Modes and central g-moments

In this section let g(x) be a nonnegative function such that g(z)=
g(—x) and g(x)/x is nondecreasing in x>0.

THEOREM 4.1. If p is unimodal with mode a and has finite mean
m and if m+a, then
la

(4.1) | sa—mudm)z2-tla—mi (" g@ya .

Equality holds in (4.1) if and only if p is the uniform distribution on
an interval with a chosen to be an endpoint of the interval.

Proor. Let g be unimodal with mode a with mean m and m#+a.
By translation and reflection, we may assume m=0 and a>0. We
estimate the g-moment of g from below by the g-moment of another
unimodal distribution with mode & and mean 0.

Step 1. Let a=gla, ) and let
1= ], @0 g g5 -

Then g, is unimodal with mode a. If pg,#py, then the g-moment of g
is smaller than that of g and the mean of g, is negative.

Step 2. Let g=p(0, a) and
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U= tt1|c—co, 00+ B2 00,05 +

As in Step 2 in the proof of Theorem 2.1, we see that p, is unimodal
with mode a and that, if p,+#,, then g, has smaller g-moment and
mean than p;.

Step 3. If p,=p, then let py=p. Suppose that u,#px. We see
that g0 has positive mean, since it does not have flat density. On
the other hand, y, has negative mean. So we can find b>a such that

= fsl—p,mrF pto(— 00, —b)a™ 20,0

has zero mean. Obviously g; is unimodal with mode a and its g-mo-
ment is smaller than that of g,.

Step 4. We have (0, a)=1/2, since g, is unimodal with mode a,
concentrated on (—oo,a) and has zero mean. The case (0, a)=1/2
occurs if and only if p; is the uniform distribution on [—a, a]. Let
fi(x) be the density of p,. We have fyx)=7 on (0, a) for some con-
stant y=(2a)™!. We claim that

(42) [ s@r@dozr | g .
This will imply

[s@mn)zr | g@rszea | o@ia,
from which (4.1) follows. First note that

| afi@do={"_str—fiwnda .
Using this and increasingness of g(x)/x in >0, we have
[ s sioxnzo@a | ol i
=@ | laltr—fi@Ndoz| o@)—fim)ds .

Thus (4.2) follows. This proof shows that equality holds in (4.1) only
if p is the uniform distribution on an interval with a chosen to be an

endpoint of the interval. As the converse statement for the equality
is obvious, proof of the theorem is complete.

Remark 4.1. Define l(x) by lz)=(22)™* Sz_ g(y)dy for x>0 and

I(0)=g(0+). Now, if g is unimodal with mode a and has finite mean
m, then
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| sa—m)p@m)zUla—ml) .

Noting that l(x) is a continuous increasing function from [0, c0) onto
[g(0+), ), let x=hy(y) be the inverse function of y=I(x). Then

la—m[§h2<s g(:c—m)p(dx)) .

If y=g(0+), then hy(y) is the supremum of modes taken over all uni-
modal distributions that have mean 0 and g-moment y. In fact, for
x=hy(y), the uniform distribution on [—x, #] has mean 0 and g-mo-
ment y.

Remark 4.2. The assumption of nondecreasingness of g(z)/x in
2>0 in Theorem 4.1 cannot be replaced by nondecreasingness of g(x)
in 2>0. For example, let g(x)=|z]? with 0<p<1 and choose p(dx)=
f(x)dx with a=1 and m=0 in the form f(x)=ac on [—b, —1/2), a on
[—1/2,1] and 0 outside of [—b, 1] where b>1/2, >0, 0<c<1l. Then

Sg(x),u(dx) is smaller than (p-+1)~! when b is sufficiently large.

5. Modes and central absolute moment of order p=1

We apply Theorem 4.1 to central absolute moments.

THEOREM 5.1. Let p=1. If p is umimodal with mode a and has
finite mean m, then

(6.1) la—m|s(p+1)"*r",

where r,,:S |e—mPp(dx). Equality holds in (5.1) of and only if p 18 a

3-distribution or a uniform distribution on an interval with a chosen
to be an endpoint of the interval.

ProoF. If a=m, then (5.1) is trivial. If a+#m, then, using
Theorem 4.1 for g(x)=|x?, we get

,2(@+1)"a—mfP,

that is (5.1). The statement about the case of the equality also fol-
lows from the theorem.

Remark 5.1. The coefficient (p+1)¥? in (5.1) decreases from 2 to
1 as p increases from 1 to oo.
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6. Modes and exponential moments

Let us consider exponential moments.

THEOREM 6.1. Let g(x)=e'*'—1. For y=0, let h(y) be the supre-
mum of modes taken over all unimodal distributions that have g-moment
y, and let hy(y) be the supremum of modes taken over all unimodal dis-
tributions with g-moment y and mean 0. Then,

hy(y)=log y+log log y+log 2+(27'+o(1))(log y) ' log log ¥ ,
hy(y)=log y-+log log y+(1+o0(1))(log y)~* log log ¥

as Yy —oo.

ProoF. By Remark 2.1, the function z=h,(y) for y>0 is given by
c=log (y+1) and by the equation

(x+c—1)e—e*+2=0

with the condition >¢. The function x=h,(y) is, according to Remark
4.1, the inverse function of y=(e*—x—1)/x, 2>0. Hence, by the method
of asymptotic expansion (see Dieudonné [1], III. 8), we can prove that
h(y) and hy(y) behave as in the statement of the theorem.
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