MODES AND MOMENTS OF UNIMODAL DISTRIBUTIONS

KEN-ITI SATO

(Received Sept. 10, 1985)

Summary

For a unimodal distribution relations of its mode a with its absolute moment β_p and central absolute moment γ_p of order p are considered. The best constants A_p and B_p are given for the inequalities $|a| \le A_p \beta_p^{1/p} \ (p > 0)$ and $|a - m| \le B_p \gamma_p^{1/p} \ (p \ge 1)$ where m is the mean. The results follow from discussion of more general moments.

1. Introduction

Let μ be a unimodal distribution with mode a and let β_p be its absolute moment of order p>0. It is shown in Sato [4] that there is a constant A_p such that

$$(1.1) |a| \leq A_n \beta_n^{1/p}.$$

When μ has finite mean m, the central absolute moment of order $p \ge 1$ is denoted by γ_p . It is also shown in [4] that there is a constant B_p for p>1 such that

$$(1.2) |a-m| \leq B_p \gamma_p^{1/p}.$$

Here A_p and B_p are constants depending only on p. The latter is an extension of a result of Johnson and Rogers [3], who give (1.2) for p=2 and prove that $B_2=\sqrt{3}$ is the best constant. This result for p=2 is rediscovered by Vysochanskii and Petunin [5]. By monotonicity of $\gamma_p^{1/p}$ in p, the existence of B_p for some $p=p_0$ implies its existence for any $p\geq p_0$. We can make a similar assertion for A_p by monotonicity of $\beta_p^{1/p}$ for p>0. But the case of small p is interesting, since there are many unimodal distributions that have absolute moments of order p only for small p. For example stable distributions of exponent a (0<a<2) are unimodal and have absolute moments of order p only for 0 .

Key words and phrases: Unimodal distribution, mode, moment.

In this paper we will present a new proof of (1.1) and (1.2) and give the best constants. We will show that

$$(1.3) B_{p} = (p+1)^{1/p}$$

is the best constant in (1.2) for $p \ge 1$ (now the case p=1 is included) and that the best constant in (1.1) for p>0 is the unique solution of the equation

$$(1.4) x^{p+1} - (p+1)x - p = 0$$

for x>1. Thus $A_p>(p+1)^{1/p}$ for p>0; $A_2=2$, $A_1=1+\sqrt{2}$, and, approximately, $A_{1/2}=2.81451$.

Given a function g on the line, we call the integral $\int g(x)\mu(dx)$ the g-moment of μ , and $\int g(x-m)\mu(dx)$ the central g-moment of μ . We will give inequalities involving modes and g-moments of unimodal distributions. The bounds (1.1) and (1.2) are extended to more general moments.

2. Modes and g-moments

A distribution μ is called unimodal if there is a point a such that the distribution function of μ is convex on $(-\infty, a)$ and concave on (a, ∞) . The point a is called a mode of μ . If μ is unimodal, then the set of modes of μ is either a one point set or a closed interval. Write the restriction of μ to an interval I as $\mu|_{I}$. A distribution μ is unimodal with mode a if and only if $\mu|_{(a,\infty)}$ is absolutely continuous with nondecreasing density and $\mu|_{(a,\infty)}$ is absolutely continuous with nonincreasing density.

Let g(x) be a nonnegative continuous function on the line such that g(x)=g(-x) and g(x) is increasing for x>0. The words *increase* and decrease are used in the strict sense.

THEOREM 2.1. For every a>0, there is a unique point c satisfying 0< c< a such that, if μ is a unimodal distribution with mode a, then

(2.1)
$$\int g(x)\mu(dx) \geq (a+c)^{-1} \int_{-c}^{a} g(x)dx.$$

The point c is the unique point satisfying 0 < c < a and

(2.2)
$$g(c) = (a+c)^{-1} \int_{-c}^{a} g(x) dx.$$

Equality holds in (2.1) if and only if μ is the uniform distribution on [-c, a].

PROOF. Denote the Lebesgue measure on the line by λ . Let a>0 and let μ be a unimodal distribution with mode a. We estimate the g-moment of μ from below in three steps.

Step 1. Let
$$\alpha = \mu(-\infty, -a] + \mu[a, \infty)$$
 and let
$$\mu_1 = \mu|_{\alpha=0} + \alpha a^{-1} \lambda|_{\alpha=0}.$$

Obviously, μ_1 is a unimodal distribution with mode a. Since g is even and increasing on the positive line, the g-moment of μ_1 is smaller than or equal to that of μ . If $\mu_1 \neq \mu$, then they are not equal.

Step 2. Let $\beta = \mu_1(0, a)$ and let

$$\mu_2 = \mu_1|_{(-a,0)} + \beta a^{-1}\lambda|_{(0,a)}$$
.

Again this is unimodal with mode a. Let $f_1(x)$ be the nondecreasing density of μ_1 on (-a, a). If f_1 is flat on (0, a), then $\mu_2 = \mu_1$. If $f_1(0+) < f_1(a-)$, then, noting $f_1(0+) < \beta a^{-1} < f_1(a-)$ and choosing 0 < a' < a that satisfies $f_1(a'-) \le \beta a^{-1} \le f_1(a'+)$, we have

$$\int_{0}^{a'} (\beta a^{-1} - f_1(x)) dx = \int_{a'}^{a} (f_1(x) - \beta a^{-1}) dx$$

and

$$\int_{a}^{a'} g(x)(\beta a^{-1} - f_1(x)) dx < \int_{a'}^{a} g(x)(f_1(x) - \beta a^{-1}) dx ,$$

which implies that the g-moment of μ_2 is smaller than that of μ_1 .

Step 3. Let $\gamma = \mu_2(-a, 0)$ and $b = \gamma \beta^{-1}a$. Then, $0 \le b \le a$. Let $\mu_3 = \beta a^{-1} \lambda|_{(-b,a)}$, the uniform distribution on [-b, a]. Now

$$(2.3) \qquad \int g(x)\mu_3(dx) \leq \int g(x)\mu_2(dx) ,$$

because, letting $f_2(x)$ be the nondecreasing density of μ_2 on (-a, a), we have

$$\int_{-b}^{0} (\beta a^{-1} - f_2(x)) dx = \int_{-a}^{-b} f_2(x) dx$$

and

$$\int_{-b}^{0} g(x)(\beta a^{-1} - f_2(x)) dx \leq \int_{-a}^{-b} g(x) f_2(x) dx.$$

Strict inequality holds in (2.3) if $\mu_3 \neq \mu_2$.

Now define, for fixed a,

$$\varphi(b) = (a+b)^{-1} \int_{-b}^{a} g(x) dx$$
.

The above three steps show that

$$\int g(x)\mu(dx) \! \ge \! \varphi(b)$$

for some b in [0, a]. Here b depends on μ . Strict inequality holds unless μ is the uniform distribution on [-b', a] for some $b' \in [0, a]$. As b moves on [0, a], the function $\varphi(b)$ takes the minimum at a unique point c. In fact, $\varphi'(b) = (a+b)^{-2} \varphi(b)$ where

$$\psi(b) = (a+b)g(-b) - \int_{-b}^{a} g(x)dx = \int_{-b}^{b} (g(b)-g(x))dx - \int_{b}^{a} (g(x)-g(b))dx,$$

and $\phi(b)$ is a continuous increasing function with $\phi(0) < 0$ and $\phi(a) > 0$. The point c is the unique point such that 0 < c < a and $\phi(c) = 0$, which is equivalent to (2.2). The proof is complete.

Remark 2.1. Define k(a) for a>0 by k(a)=c in Theorem 2.1 and k(0)=0. We see that, if μ is unimodal with mode a, then

$$\int g(x)\mu(dx) \geq g(k(|a|)).$$

Let $M=\sup g(x) \leq \infty$. The equation (2.2) shows that

$$\int_{-c}^{c} (g(c)-g(x))dx = \int_{c}^{a} (g(x)-g(c))dx.$$

As a increases, c must increase in order to satisfy this identity. That is, k(x) is increasing in x. Now it is easy to see that k(x) is a continuous increasing function from $[0, \infty)$ onto itself. Hence g(k(x)) is a continuous increasing function from $[0, \infty)$ onto [g(0), M). Let $x = h_1(y)$ be the inverse function of y = g(k(x)). If μ is unimodal with mode a, then

$$|a| \leq h_1 \Big(\int g(x) \mu(dx) \Big)$$
.

For every $y \ge g(0)$, $h_1(y)$ is the supremum of modes taken over all unimodal distributions that have g-moment y. In fact, for $x=h_1(y)$, the uniform distribution on [-k(x), x] has g-moment y.

3. Modes and absolute moments of order $p{>}0$

The preceding theorem has the following consequence.

THEOREM 3.1. For p>0, let A_p be the unique solution of the equa-

tion (1.4) in (1, ∞). If μ is unimodal with mode a, then

$$|a| \leq A_p \beta_p^{1/p},$$

where $\beta_p = \int |x|^p \mu(dx)$. Equality holds in (3.1) if and only if μ and a satisfy one of the following:

- (i) a=0 and μ is the δ -distribution at 0:
- (ii) a>0 and μ is the uniform distribution on $[-a/A_n, a]$;
- (iii) a < 0 and μ is the uniform distribution on $[a, -a/A_n]$.

PROOF. Let a>0. It is enough to prove the theorem in this case. Let $g(x)=|x|^p$ in Theorem 2.1. Then

$$\int |x|^p \mu(dx) \geq c^p$$
,

where c is the unique solution of the equation

$$(a+c)c^{p}-(p+1)^{-1}(a^{p+1}+c^{p+1})=0$$

for 0 < c < a. We see that $1/A_p$ is the value of c for a=1. The value of c for general a>0 is $c=a/A_p$. Hence we obtain (3.1). Equality holds in (3.1) if and only if (ii) holds, as Theorem 2.1 says. The proof is complete.

Remark 3.1. Let A be the unique positive solution of the equation

$$(3.2) x \log x - x - 1 = 0.$$

The constant A_p decreases as p increases, and

$$\lim_{n \to 0} A_p = A, \qquad \lim_{n \to \infty} A_p = 1.$$

It is easily seen from (3.2) that e < A < 2e. An approximate value is A = 3.59112.

In fact, let a>0 and let 0 . We have

$$|a| \leq A_n \beta_n^{1/p} < A_n \beta_n^{1/p'}$$

unless μ is concentrated at a (see Hardy et al. [2], p. 157). Choose μ to be the uniform distribution on $[-a/A_p, a]$. Then $a=A_p\beta_p^{1/p}$. Hence we have $A_p < A_p$. If $\lim_{p \uparrow \infty} A_p > 1$, then $1-(p+1)A_p^{-p}-pA_p^{-p-1}=0$ leads to a contradiction. Therefore A_p tends to 1 as $p \uparrow \infty$. If we fix x > 1 and let p decrease to 0, then

$$x^{p+1}-(p+1)x-p=p(x \log x-x-1)+O(p^2)$$
.

Hence, if 1 < x < A, then $x^{p+1} - (p+1)x - p$ is negative for small p; if

x>A, then it is positive for small p. This shows that $\lim_{p\downarrow 0} A_p=A$.

Remark 3.2. If the integral $\int \log |x| \mu(dx)$ exists, the geometric mean g of μ is defined by

$$g = \exp \int \log |x| \mu(dx)$$
.

If μ is unimodal with mode a and $\int \log |x| \mu(dx) < \infty$, then

$$|a| \leq A\mathfrak{g},$$

where A is given in Remark 3.1. In fact, if μ has finite β_p for some p>0, then $\beta_p^{1/p}$ tends to g as $p\downarrow 0$ (see [2], p. 156) and we have (3.4) from (3.1) and (3.3). If μ has infinite β_p for every p>0, then consider μ_p defined by

$$\mu_n = \mu|_{(-n,n)} + \alpha_n \delta_a$$
, $\alpha_n = \mu(-\infty, -n] + \mu[n, \infty)$

and note that the geometric mean of μ_n tends to g as $n \to \infty$.

4. Modes and central g-moments

In this section let g(x) be a nonnegative function such that g(x) = g(-x) and g(x)/x is nondecreasing in x > 0.

THEOREM 4.1. If μ is unimodal with mode a and has finite mean m and if $m \neq a$, then

(4.1)
$$\int g(x-m)\mu(dx) \geq 2^{-1}|a-m|^{-1} \int_{-|a-m|}^{|a-m|} g(x)dx.$$

Equality holds in (4.1) if and only if μ is the uniform distribution on an interval with a chosen to be an endpoint of the interval.

PROOF. Let μ be unimodal with mode a with mean m and $m \neq a$. By translation and reflection, we may assume m=0 and a>0. We estimate the g-moment of μ from below by the g-moment of another unimodal distribution with mode a and mean 0.

Step 1. Let
$$\alpha = \mu[a, \infty)$$
 and let

$$\mu_1 = \mu|_{(-\infty,a)} + \alpha a^{-1} \lambda|_{(0,a)}$$
.

Then μ_1 is unimodal with mode a. If $\mu_1 \neq \mu$, then the g-moment of μ_1 is smaller than that of μ and the mean of μ_1 is negative.

Step 2. Let
$$\beta = \mu_1(0, a)$$
 and

$$\mu_2 = \mu_1|_{(-\infty,0)} + \beta a^{-1}\lambda|_{(0,a)}$$
.

As in Step 2 in the proof of Theorem 2.1, we see that μ_2 is unimodal with mode a and that, if $\mu_2 \neq \mu_1$, then μ_2 has smaller g-moment and mean than μ_1 .

Step 3. If $\mu_2 = \mu$, then let $\mu_3 = \mu$. Suppose that $\mu_2 \neq \mu$. We see that $\mu_2|_{(-a,a)}$ has positive mean, since it does not have flat density. On the other hand, μ_2 has negative mean. So we can find b > a such that

$$\mu_8 = \mu_2|_{(-b,a)} + \mu_2(-\infty, -b)a^{-1}\lambda|_{(0,a)}$$

has zero mean. Obviously μ_3 is unimodal with mode a and its g-moment is smaller than that of μ_2 .

Step 4. We have $\mu_3(0, a) \ge 1/2$, since μ_3 is unimodal with mode a, concentrated on $(-\infty, a)$ and has zero mean. The case $\mu_3(0, a) = 1/2$ occurs if and only if μ_3 is the uniform distribution on [-a, a]. Let $f_3(x)$ be the density of μ_3 . We have $f_3(x) = \gamma$ on (0, a) for some constant $\gamma \ge (2a)^{-1}$. We claim that

$$(4.2) \qquad \int_{-\infty}^{0} g(x) f_{\mathfrak{z}}(x) dx \ge \gamma \int_{-a}^{0} g(x) dx .$$

This will imply

$$\int g(x)\mu_3(dx) \geq \gamma \int_{-a}^a g(x)dx \geq (2a)^{-1} \int_{-a}^a g(x)dx ,$$

from which (4.1) follows. First note that

$$\int_{-\infty}^{-a} x f_{3}(x) dx = \int_{-a}^{0} x (\gamma - f_{3}(x)) dx.$$

Using this and increasingness of g(x)/x in x>0, we have

$$\begin{split} \int_{-\infty}^{-a} g(x) f_{\mathfrak{z}}(x) dx & \geq g(a) a^{-1} \int_{-\infty}^{-a} |x| f_{\mathfrak{z}}(x) dx \\ & = g(a) a^{-1} \int_{-a}^{0} |x| (\gamma - f_{\mathfrak{z}}(x)) dx \geq \int_{-a}^{0} g(x) (\gamma - f_{\mathfrak{z}}(x)) dx \; . \end{split}$$

Thus (4.2) follows. This proof shows that equality holds in (4.1) only if μ is the uniform distribution on an interval with a chosen to be an endpoint of the interval. As the converse statement for the equality is obvious, proof of the theorem is complete.

Remark 4.1. Define l(x) by $l(x)=(2x)^{-1}\int_{-x}^{x}g(y)dy$ for x>0 and l(0)=g(0+). Now, if μ is unimodal with mode a and has finite mean m, then

$$\int g(x-m)\mu(dx) \ge l(|a-m|) .$$

Noting that l(x) is a continuous increasing function from $[0, \infty)$ onto $[g(0+), \infty)$, let $x=h_2(y)$ be the inverse function of y=l(x). Then

$$|a-m| \leq h_2 \Big(\int g(x-m)\mu(dx) \Big)$$
.

If $y \ge g(0+)$, then $h_2(y)$ is the supremum of modes taken over all unimodal distributions that have mean 0 and g-moment y. In fact, for $x=h_2(y)$, the uniform distribution on [-x,x] has mean 0 and g-moment y.

Remark 4.2. The assumption of nondecreasingness of g(x)/x in x>0 in Theorem 4.1 cannot be replaced by nondecreasingness of g(x) in x>0. For example, let $g(x)=|x|^p$ with 0< p<1 and choose $\mu(dx)=f(x)dx$ with a=1 and m=0 in the form $f(x)=\alpha c$ on [-b,-1/2), α on [-1/2,1] and 0 outside of [-b,1] where b>1/2, $\alpha>0$, 0< c<1. Then $\int g(x)\mu(dx)$ is smaller than $(p+1)^{-1}$ when b is sufficiently large.

5. Modes and central absolute moment of order $p \ge 1$

We apply Theorem 4.1 to central absolute moments.

THEOREM 5.1. Let $p \ge 1$. If μ is unimodal with mode a and has finite mean m, then

$$|a-m| \leq (p+1)^{1/p} \gamma_p^{1/p} ,$$

where $\gamma_r = \int |x-m|^p \mu(dx)$. Equality holds in (5.1) if and only if μ is a δ -distribution or a uniform distribution on an interval with a chosen to be an endpoint of the interval.

PROOF. If a=m, then (5.1) is trivial. If $a \neq m$, then, using Theorem 4.1 for $g(x)=|x|^p$, we get

$$\gamma_p \ge (p+1)^{-1}|a-m|^p$$
,

that is (5.1). The statement about the case of the equality also follows from the theorem.

Remark 5.1. The coefficient $(p+1)^{1/p}$ in (5.1) decreases from 2 to 1 as p increases from 1 to ∞ .

6. Modes and exponential moments

Let us consider exponential moments.

THEOREM 6.1. Let $g(x)=e^{|x|}-1$. For $y\geq 0$, let $h_1(y)$ be the supremum of modes taken over all unimodal distributions that have g-moment y, and let $h_2(y)$ be the supremum of modes taken over all unimodal distributions with g-moment y and mean 0. Then,

$$h_1(y) = \log y + \log \log y + \log 2 + (2^{-1} + o(1))(\log y)^{-1} \log \log y$$
,

$$h_2(y) = \log y + \log \log y + (1 + o(1))(\log y)^{-1} \log \log y$$

as $u \rightarrow \infty$.

PROOF. By Remark 2.1, the function $x=h_1(y)$ for y>0 is given by $c=\log(y+1)$ and by the equation

$$(x+c-1)e^{c}-e^{x}+2=0$$

with the condition x>c. The function $x=h_2(y)$ is, according to Remark 4.1, the inverse function of $y=(e^x-x-1)/x$, x>0. Hence, by the method of asymptotic expansion (see Dieudonné [1], III. 8), we can prove that $h_1(y)$ and $h_2(y)$ behave as in the statement of the theorem.

NAGOYA UNIVERSITY

REFERENCES

- [1] Dieudonné, J. (1968). Calcul Infinitesimal, Herman, Paris (Japanese translation: Mugenshô-kaiseki, I and II, Tokyo-tosho, Tokyo, 1973).
- [2] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934). Inequalities, Cambridge University Press, Cambridge.
- [3] Johnson, N. L. and Rogers, C. A. (1951). The moment problem for unimodal distributions. Ann. Math. Statist., 22, 433-439.
- [4] Sato, K. (1986). Bounds of modes and unimodal processes with independent increments, Nagoya Math. J., 104, 29-42.
- [5] Vysochanskii, D. F. and Petunin, Yu. I. (1982). On a Gauss inequality for unimodal distributions, *Theor. Probab. Appl.*, 27, 359-361.