MODES AND MOMENTS OF UNIMODAL DISTRIBUTIONS

KEN-ITI SATO

(Received Sept. 10, 1985)

Summary

For a unimodal distribution relations of its mode a with its absolute moment β_p and central absolute moment γ_p of order p are considered. The best constants A_p and B_p are given for the inequalities $|a| \leq A_p \beta_p^p$ ($p > 0$) and $|a - m| \leq B_p \gamma_p^{1/p}$ ($p \geq 1$) where m is the mean. The results follow from discussion of more general moments.

1. Introduction

Let μ be a unimodal distribution with mode a and let β_p be its absolute moment of order $p > 0$. It is shown in Sato [4] that there is a constant A_p such that

\begin{equation}
|a| \leq A_p \beta_p^{1/p}.
\end{equation}

When μ has finite mean m, the central absolute moment of order $p \geq 1$ is denoted by γ_p. It is also shown in [4] that there is a constant B_p for $p > 1$ such that

\begin{equation}
|a - m| \leq B_p \gamma_p^{1/p}.
\end{equation}

Here A_p and B_p are constants depending only on p. The latter is an extension of a result of Johnson and Rogers [3], who give (1.2) for $p = 2$ and prove that $B_2 = \sqrt{3}$ is the best constant. This result for $p = 2$ is rediscovered by Vysochanskii and Petunin [5]. By monotonicity of $\gamma_p^{1/p}$ in p, the existence of B_p for some $p = p_0$ implies its existence for any $p \geq p_0$. We can make a similar assertion for A_p by monotonicity of $\beta_p^{1/p}$ for $p > 0$. But the case of small p is interesting, since there are many unimodal distributions that have absolute moments of order p only for small p. For example stable distributions of exponent α ($0 < \alpha < 2$) are unimodal and have absolute moments of order p only for $0 < p < \alpha$.

Key words and phrases: Unimodal distribution, mode, moment.
In this paper we will present a new proof of (1.1) and (1.2) and give the best constants. We will show that

\[(1.3) \quad B_p=(p+1)^{1/p} \]

is the best constant in (1.2) for \(p \geq 1\) (now the case \(p=1\) is included) and that the best constant in (1.1) for \(p>0\) is the unique solution of the equation

\[(1.4) \quad x^{p+1}-(p+1)x-p=0 \]

for \(x>1\). Thus \(A_p>(p+1)^{1/p}\) for \(p>0\); \(A_2=2, A_1=1+\sqrt{2}\), and, approximately, \(A_{1/2}=2.81451\).

Given a function \(g\) on the line, we call the integral \(\int g(x)\mu(dx)\) the \(g\)-moment of \(\mu\), and \(\int g(x-m)\mu(dx)\) the central \(g\)-moment of \(\mu\). We will give inequalities involving modes and \(g\)-moments of unimodal distributions. The bounds (1.1) and (1.2) are extended to more general moments.

2. Modes and \(g\)-moments

A distribution \(\mu\) is called unimodal if there is a point \(a\) such that the distribution function of \(\mu\) is convex on \((-\infty, a)\) and concave on \((a, \infty)\). The point \(a\) is called a mode of \(\mu\). If \(\mu\) is unimodal, then the set of modes of \(\mu\) is either a one point set or a closed interval. Write the restriction of \(\mu\) to an interval \(I\) as \(\mu|_I\). A distribution \(\mu\) is unimodal with mode \(a\) if and only if \(\mu|_{(-\infty,a)}\) is absolutely continuous with nondecreasing density and \(\mu|_{(a,\infty)}\) is absolutely continuous with nonincreasing density.

Let \(g(x)\) be a nonnegative continuous function on the line such that \(g(x)=g(-x)\) and \(g(x)\) is increasing for \(x>0\). The words increase and decrease are used in the strict sense.

Theorem 2.1. For every \(a>0\), there is a unique point \(c\) satisfying \(0<c<a\) such that, if \(\mu\) is a unimodal distribution with mode \(a\), then

\[(2.1) \quad \int g(x)\mu(dx) \geq (a+c)^{-1}\int_{-c}^{a} g(x)dx .\]

The point \(c\) is the unique point satisfying \(0<c<a\) and

\[(2.2) \quad g(c)=(a+c)^{-1}\int_{-c}^{a} g(x)dx .\]

Equality holds in (2.1) if and only if \(\mu\) is the uniform distribution on \([-c,a]\).
PROOF. Denote the Lebesgue measure on the line by \(\lambda \). Let \(a > 0 \) and let \(\mu \) be a unimodal distribution with mode \(a \). We estimate the \(g \)-moment of \(\mu \) from below in three steps.

Step 1. Let \(\alpha = \mu(-\infty, -a] + \mu[a, \infty) \) and let

\[
\mu_1 = \mu_{[-a, a]} + \alpha a^{-1} \lambda_{[a, \infty)} .
\]

Obviously, \(\mu_1 \) is a unimodal distribution with mode \(a \). Since \(g \) is even and increasing on the positive line, the \(g \)-moment of \(\mu_1 \) is smaller than or equal to that of \(\mu \). If \(\mu_1 \neq \mu \), then they are not equal.

Step 2. Let \(\beta = \mu_1(0, a) \) and let

\[
\mu_2 = \mu_1_{[-a, 0]} + \beta a^{-1} \lambda_{[a, \infty)} .
\]

Again this is unimodal with mode \(a \). Let \(f_1(x) \) be the nondecreasing density of \(\mu_1 \) on \((-a, a)\). If \(f_1 \) is flat on \((0, a)\), then \(\mu_2 = \mu_1 \). If \(f_1(0+) < f_1(a-) \), then noting \(f_1(0+) < \beta a^{-1} < f_1(a-) \) and choosing \(0 < a' < a \) that satisfies \(f_1(a' -) \leq \beta a^{-1} \leq f_1(a' +) \), we have

\[
\int_0^a (f_1(x) - \beta a^{-1}) dx = \int_0^{a'} (f_1(x) - \beta a^{-1}) dx
\]

and

\[
\int_0^a g(x) (f_1(x) - \beta a^{-1}) dx < \int_0^a g(x) (f_1(x) - \beta a^{-1}) dx ,
\]

which implies that the \(g \)-moment of \(\mu_2 \) is smaller than that of \(\mu_1 \).

Step 3. Let \(\gamma = \mu_2(-a, 0) \) and \(b = \gamma \beta^{-1} a \). Then, \(0 \leq b \leq a \). Let \(\mu_3 = \beta a^{-1} \lambda_{[-b, a]} \), the uniform distribution on \([-b, a]\). Now

\[
(2.3) \quad \int g(x) \mu_3(dx) \leq \int g(x) \mu_2(dx) ,
\]

because, letting \(f_3(x) \) be the nondecreasing density of \(\mu_3 \) on \((-a, a)\), we have

\[
\int_{-a}^a (\beta a^{-1} - f_3(x)) dx = \int_{-a}^{-b} f_3(x) dx
\]

and

\[
\int_{-b}^a g(x) (\beta a^{-1} - f_3(x)) dx \leq \int_{-a}^{-b} g(x) f_3(x) dx .
\]

Strict inequality holds in (2.3) if \(\mu_3 \neq \mu_2 \).

Now define, for fixed \(a \),
\[\varphi(b) = (a+b)^{-1} \int_{-b}^{a} g(x) dx . \]

The above three steps show that
\[\int g(x) \mu(dx) \geq \varphi(b) \]
for some \(b \) in \([0, a]\). Here \(b \) depends on \(\mu \). Strict inequality holds unless \(\mu \) is the uniform distribution on \([-b', a]\) for some \(b' \in [0, a] \). As \(b \) moves on \([0, a]\), the function \(\varphi(b) \) takes the minimum at a unique point \(c \). In fact, \(\varphi'(b) = (a+b)^{-2} \varphi(b) \) where
\[\varphi(b) = (a+b)g(-b) - \int_{-b}^{a} g(x) dx = \int_{-b}^{b} (g(b) - g(x)) dx - \int_{b}^{a} (g(x) - g(b)) dx , \]
and \(\varphi(b) \) is a continuous increasing function with \(\varphi(0) < 0 \) and \(\varphi(a) > 0 \). The point \(c \) is the unique increasing function such that \(0 < c < a \) and \(\varphi(c) = 0 \), which is equivalent to (2.2). The proof is complete.

Remark 2.1. Define \(k(a) \) for \(a > 0 \) by \(k(a) = c \) in Theorem 2.1 and \(k(0) = 0 \). We see that, if \(\mu \) is unimodal with mode \(a \), then
\[\int g(x) \mu(dx) \leq g(k(|a|)) . \]

Let \(M = \sup g(x) \leq \infty \). The equation (2.2) shows that
\[\int_{-c}^{c} (g(c) - g(x)) dx = \int_{c}^{a} (g(x) - g(c)) dx . \]
As \(a \) increases, \(c \) must increase in order to satisfy this identity. That is, \(k(x) \) is increasing in \(x \). Now it is easy to see that \(k(x) \) is a continuous increasing function from \([0, \infty)\) onto itself. Hence \(g(k(x)) \) is a continuous increasing function from \([0, \infty)\) onto \([g(0), M]\). Let \(x = h_t(y) \) be the inverse function of \(y = g(k(x)) \). If \(\mu \) is unimodal with mode \(a \), then
\[|a| \leq h_t \left(\int g(x) \mu(dx) \right) . \]
For every \(y \geq g(0) \), \(h_t(y) \) is the supremum of modes taken over all unimodal distributions that have \(g \)-moment \(y \). In fact, for \(x = h_t(y) \), the uniform distribution on \([-k(x), x]\) has \(g \)-moment \(y \).

3. **Modes and absolute moments of order \(p > 0 \)**

The preceding theorem has the following consequence.

Theorem 3.1. For \(p > 0 \), let \(A_p \) be the unique solution of the equa-
tion (1.4) in (1, ∞). If \(\mu \) is unimodal with mode \(a \), then

\[
|a| \leq A_p \beta_p^{\beta_p},
\]

where \(\beta_p = \int |x|^p \mu(dx) \). Equality holds in (3.1) if and only if \(\mu \) and \(a \) satisfy one of the following:

(i) \(a = 0 \) and \(\mu \) is the \(\delta \)-distribution at 0;
(ii) \(a > 0 \) and \(\mu \) is the uniform distribution on \([-a/A_p, a] \);
(iii) \(a < 0 \) and \(\mu \) is the uniform distribution on \([a, -a/A_p] \).

Proof. Let \(a > 0 \). It is enough to prove the theorem in this case. Let \(g(x) = |x|^p \) in Theorem 2.1. Then

\[
\int |x|^p \mu(dx) \geq c^p,
\]

where \(c \) is the unique solution of the equation

\[
(a + c)^p - (p + 1)^{-1}(a^{p+1} + c^{p+1}) = 0
\]

for \(0 < c < a \). We see that \(1/A_p \) is the value of \(c \) for \(a = 1 \). The value of \(c \) for general \(a > 0 \) is \(c = a/A_p \). Hence we obtain (3.1). Equality holds in (3.1) if and only if (ii) holds, as Theorem 2.1 says. The proof is complete.

Remark 3.1. Let \(A \) be the unique positive solution of the equation

\[
x \log x - x - 1 = 0.
\]

The constant \(A_p \) decreases as \(p \) increases, and

\[
\lim_{p \to 0} A_p = A, \quad \lim_{p \to \infty} A_p = 1.
\]

It is easily seen from (3.2) that \(e < A < 2e \). An approximate value is \(A = 3.59112 \).

In fact, let \(a > 0 \) and let \(0 < p < p' \). We have

\[
|a| \leq A_p \beta_p^{\beta_p} < A_p \beta_p^{\beta_p'}
\]

unless \(\mu \) is concentrated at \(a \) (see Hardy et al. [2], p. 157). Choose \(\mu \) to be the uniform distribution on \([-a/A_p, a] \). Then \(a = A_p \beta_p^{\beta_p'} \). Hence we have \(A_p < A_p \). If \(\lim_{p \to \infty} A_p > 1 \), then \(1 - (p + 1)A_p^p - pA_p^{p-1} = 0 \) leads to a contradiction. Therefore \(A_p \) tends to 1 as \(p \to \infty \). If we fix \(x > 1 \) and let \(p \) decrease to 0, then

\[
x^{p+1} - (p + 1)x - p = p(x \log x - x - 1) + O(p^2).
\]

Hence, if \(1 < x < A \), then \(x^{p+1} - (p + 1)x - p \) is negative for small \(p \); if
$x > A$, then it is positive for small p. This shows that $\lim_{p \downarrow 0} A_p = A$.

Remark 3.2. If the integral $\int \log |x| \mu(dx)$ exists, the geometric mean g of μ is defined by

$$g = \exp \int \log |x| \mu(dx).$$

If μ is unimodal with mode a and $\int \log |x| \mu(dx) < \infty$, then

$$|a| \leq A_g,$$

where A is given in Remark 3.1. In fact, if μ has finite β_p for some $p > 0$, then $\beta_p^{1/p}$ tends to g as $p \downarrow 0$ (see [2], p. 156) and we have (3.4) from (3.1) and (3.3). If μ has infinite β_p for every $p > 0$, then consider μ_n defined by

$$\mu_n = \mu_{[k-n, n]} + a_n \delta_n, \quad a_n = \mu(-\infty, -n] + \mu[n, \infty)$$

and note that the geometric mean of μ_n tends to g as $n \to \infty$.

4. Modes and central g-moments

In this section let $g(x)$ be a nonnegative function such that $g(x) = g(-x)$ and $g(x)/x$ is nondecreasing in $x > 0$.

Theorem 4.1. If μ is unimodal with mode a and has finite mean m and if $m \neq a$, then

$$\int g(x - m) \mu(dx) \geq 2^{-1} |a - m|^{-1} \int |x - a|^{-1} \log |x| dx.$$

Equality holds in (4.1) if and only if μ is the uniform distribution on an interval with a chosen to be an endpoint of the interval.

Proof. Let μ be unimodal with mode a with mean m and $m \neq a$. By translation and reflection, we may assume $m = 0$ and $a > 0$. We estimate the g-moment of μ from below by the g-moment of another unimodal distribution with mode a and mean 0.

Step 1. Let $a = \mu[a, \infty)$ and let

$$\mu_1 = \mu_{(-\infty, a]} + a^{-1} \lambda_{[a, \infty)}.$$

Then μ_1 is unimodal with mode a. If $\mu_1 \neq \mu$, then the g-moment of μ_1 is smaller than that of μ and the mean of μ_1 is negative.

Step 2. Let $\beta = \mu_1(0, a)$ and
\[\mu_2 = \phi_{1, \infty, 0} + \beta a^{-1} \lambda_{0, a} \cdot \]

As in Step 2 in the proof of Theorem 2.1, we see that \(\mu_2 \) is unimodal with mode \(a \) and that, if \(\mu_2 \neq \mu_1 \), then \(\mu_2 \) has smaller \(g \)-moment and mean than \(\mu_1 \).

Step 3. If \(\mu_3 = \mu \), then let \(\mu_3 = \mu \). Suppose that \(\mu_3 \neq \mu \). We see that \(\mu_3(-\infty, a) \) has positive mean, since it does not have flat density. On the other hand, \(\mu_3 \) has negative mean. So we can find \(b > a \) such that

\[\mu_3 = \mu_3(-\infty, -b) a^{-1} \lambda_{0, a} \]

has zero mean. Obviously \(\mu_3 \) is unimodal with mode \(a \) and its \(g \)-moment is smaller than that of \(\mu_2 \).

Step 4. We have \(\mu_4(0, a) \geq 1/2 \), since \(\mu_4 \) is unimodal with mode \(a \), concentrated on \((-\infty, a) \) and has zero mean. The case \(\mu_4(0, a) = 1/2 \) occurs if and only if \(\mu_4 \) is the uniform distribution on \([-a, a] \). Let \(f_4(x) \) be the density of \(\mu_4 \). We have \(f_4(x) = \gamma \) on \((0, a) \) for some constant \(\gamma \geq (2a)^{-1} \). We claim that

\[\int_{-\infty}^{a} g(x) f_4(x) dx \geq \int_{-a}^{a} g(x) dx . \]

This will imply

\[\int g(x) \mu_4(dx) \geq \gamma \int_{-a}^{a} g(x) dx \geq (2a)^{-1} \int_{-a}^{a} g(x) dx , \]

from which (4.1) follows. First note that

\[\int_{-\infty}^{a} x f_4(x) dx = \int_{-a}^{a} x (\gamma - f_4(x)) dx . \]

Using this and increasingness of \(g(x)/x \) in \(x > 0 \), we have

\[\int_{-\infty}^{a} g(x) f_4(x) dx \geq g(a) a^{-1} \int_{-\infty}^{a} x f_4(x) dx \]

\[= g(a) a^{-1} \int_{-a}^{0} x |g(x) - f_4(x)| dx \geq \int_{-a}^{0} g(x) (\gamma - f_4(x)) dx . \]

Thus (4.2) follows. This proof shows that equality holds in (4.1) only if \(\mu \) is the uniform distribution on an interval with \(a \) chosen to be an endpoint of the interval. As the converse statement for the equality is obvious, proof of the theorem is complete.

Remark 4.1. Define \(l(x) \) by \(l(x) = (2x)^{-1} \int_{-x}^{x} g(y) dy \) for \(x > 0 \) and \(l(0) = g(0+) \). Now, if \(\mu \) is unimodal with mode \(a \) and has finite mean \(m \), then
\[\int g(x-m)\mu(dx) \geq l(|a-m|) . \]

Noting that \(l(x) \) is a continuous increasing function from \([0, \infty)\) onto \([g(0+), \infty)\), let \(x = h_2(y) \) be the inverse function of \(y = l(x) \). Then

\[|a - m| \leq h_2 \left(\int g(x-m)\mu(dx) \right) . \]

If \(y \geq g(0+) \), then \(h_2(y) \) is the supremum of modes taken over all unimodal distributions that have mean 0 and \(g \)-moment \(y \). In fact, for \(x = h_2(y) \), the uniform distribution on \([-x, x]\) has mean 0 and \(g \)-moment \(y \).

Remark 4.2. The assumption of nondecreasingness of \(g(x)/x \) in \(x > 0 \) in Theorem 4.1 cannot be replaced by nondecreasingness of \(g(x) \) in \(x > 0 \). For example, let \(g(x) = |x|^p \) with \(0 < p < 1 \) and choose \(\mu(dx) = f(x)dx \) with \(a = 1 \) and \(m = 0 \) in the form \(f(x) = \alpha c \) on \([-b, -1/2] \), \(\alpha \) on \([-1/2, 1] \) and 0 outside of \([-b, 1] \) where \(b > 1/2 \), \(\alpha > 0 \), \(0 < c < 1 \). Then \(\int g(x)\mu(dx) \) is smaller than \((p+1)^{-1} \) when \(b \) is sufficiently large.

5. Modes and central absolute moment of order \(p \geq 1 \)

We apply Theorem 4.1 to central absolute moments.

Theorem 5.1. Let \(p \geq 1 \). If \(\mu \) is unimodal with mode \(a \) and has finite mean \(m \), then

\[|a - m| \leq (p+1)^{1/p} \gamma_p^{1/p} , \tag{5.1} \]

where \(\gamma_p = \int |x-m|^p\mu(dx) \). Equality holds in (5.1) if and only if \(\mu \) is a \(\delta \)-distribution or a uniform distribution on an interval with a chosen to be an endpoint of the interval.

Proof. If \(a = m \), then (5.1) is trivial. If \(a \neq m \), then, using Theorem 4.1 for \(g(x) = |x|^p \), we get

\[\gamma_p \geq (p+1)^{-1}|a - m|^p , \]

that is (5.1). The statement about the case of the equality also follows from the theorem.

Remark 5.1. The coefficient \((p+1)^{1/p}\) in (5.1) decreases from 2 to 1 as \(p \) increases from 1 to \(\infty \).
6. Modes and exponential moments

Let us consider exponential moments.

Theorem 6.1. Let \(g(x) = e^{\left| x \right|} - 1 \). For \(y \geq 0 \), let \(h_1(y) \) be the supremum of modes taken over all unimodal distributions that have \(g \)-moment \(y \), and let \(h_2(y) \) be the supremum of modes taken over all unimodal distributions with \(g \)-moment \(y \) and mean 0. Then,

\[
\begin{align*}
 h_1(y) &= \log y + \log \log y + \log 2 + (2^{-1} + o(1))(\log y)^{-1} \log \log y, \\
 h_2(y) &= \log y + \log \log y + (1 + o(1))(\log y)^{-1} \log \log y
\end{align*}
\]

as \(y \to \infty \).

Proof. By Remark 2.1, the function \(x = h_1(y) \) for \(y > 0 \) is given by \(c = \log (y+1) \) and by the equation

\[(x + c - 1)e^x - e^c + 2 = 0\]

with the condition \(x > c \). The function \(x = h_2(y) \) is, according to Remark 4.1, the inverse function of \(y = (e^x - x - 1)/x, \ x > 0 \). Hence, by the method of asymptotic expansion (see Dieudonné [1], III. 8), we can prove that \(h_1(y) \) and \(h_2(y) \) behave as in the statement of the theorem.

NAGoya University

References

