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IN MULTIPARAMETER EXPONENTIAL FAMILIES

THEOPHILOS CACOULLOS

(Received Jan. 20, 1986; revised Apr. 7, 1986)

Summary

Exploiting the notion of identifiability of mixtures of exponential
families with respect to a vector parameter @, it is shown that the
posterior expectation of # characterizes the prior distribution of 4. The
result is applied to normal and negative multinomial distributions.

1. Introduction

Priors play a fundamental role in Bayesian statistics. Their im-
portance is enchanced by the fact that the posterior mean of a param-
eter turns out to be its Bayes estimator (predictor) under quadratic
loss. It is therefore important to be able to recover the prior under-
lying a Bayes predictor.

The problem of characterizing the prior distribution of a parameter
0 in a given family of distributions f(-|6#) has been the object of sev-
eral papers. In particular, results are available for the one-parameter
exponential family

.1) f(@|6)=a(z)b(0)e"

where, as a rule, the posterior expectation m(zx)=E[§|X=2«] charac-
terizes the prior =n(6) (see Cacoullos and Papageorgiou [3], [4] and re-
ferences therein). A rigorous treatment of the multiparameter regular
exponential family, (2.1) below, is given by Diaconis and Ylvisaker [5];
however, they are mainly concerned with conjugate priors which are
characterized by linear posterior expectations m*(x)=E{E (X|0)|X=x}
=ax+b.

In point of fact, under rather general conditions, it is possible to
characterize a large family of priors, not necessarily conjugate, relax-
ing at the same time the condition of linearity of m(x). This is made
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possible by using the concept of identifiability of mixtures (Teicher [7]
and Barndorfi-Nielsen [1]) and exploiting some known results on it.
That is, if it is possible to determine the absolute distribution f(-),

(t2) f@=| r@iomo)as

for certain f(-]6), then, by identifiability, =(-) is also uniquely deter-
mined. Here f(.) is determined from f(-|4) and m(x).

This approach was shown to be an efficient tool in characterizing
prior (mixing) distributions for continuous [4] (discrete [3]) mixtures
when both # and # are one-dimensional.

This note is motivated by the preceding remarks and the fact that,
Teicher [7], the mixture (1.2), in general, is not identifiable when « is
one-dimensional and 6 is a vector parameter. This is exemplified by
the case of mixtures of a normal distribution N(g, ¢*) with respect to
both parameters g and ¢*. In this situation, the identifiability of the
mixture requires a sample of at least two observations. In general,
the identifiability of mixtures of d-parameter exponential families re-
quires at least d observations. However, both the sample space and
the parameter space can be taken as open sets in R*—the d-dimensional
space of the sufficient statistic (see Diaconis and Ylvisaker [5], p. 271,
where the sample space X’={x} is an open set in R?% and the param-

eter set 6= {0| In ge”d,u(x)} is also an open (and convex) set in R¢, the

so called natural parameter space). Our approach below makes use of
this parametrization.

2. The main result

In view of the remarks of the preceding section, without loss of
generality, we can restrict our attention to a regular d-parameter ex-
ponential family of distributions, with probability density

@.1) f(x]6)=a(0)b(x)e",

where 6=(0,, 0;,---, 0,) and x=(x,---, ;) plays the role of the suffi-
cient statistic (a dot () indicates the scalar product of two vectors). The
main result can now be stated as follows.

THEOREM 1. Let X=(X,, X,,---, X,) be a random vector having an
absolutely continuous distribution with demsity (2.1) and =(6) a prior
distribution of 0 so that the continuous mixture defined by

2.2) f(x)_—_g f(@|0)x(8)d6
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18 identifiable. Then the posterior expectation vector
(2.3) m(x)=E[0]| X=x]

determines the (absolute) density f(-) of X; hence n(6) is also character-
ized.

Proor. Differentiating f(x|6) w.r.t. =, 1=1,---,d, gives

_ Fb(z) ( _( of of ))

|4 0)=—"2- 0)+6 o), Vf=——,-"", .
Fl="28k @0 +0f @0, (Pf=(gl 2k
Multiplying both sides by =() and then integrating out ¢ yields, after
interchanging differentiation and integration,

-4 — .

The solution of (2.4) determines the (marginal) distribution of X. By
the identifiability of the mixture (2.2), the prior =(d) is also charac-
terized.

Remark 1. As already mentioned, here the posterior mean m(x)
is not restricted to be a linear function. However, it should be noted
that the posterior mean vector m(x) can be an arbitrary function only
to the extent that it is consistent with a given f(x|#) and a chosen
prior =(d). Here our primary concern is the possibility of identifying
the prior from such a suitable (consistent) m(x), not necessarily linear.
The solvability of (2.4) requires, for example, that m(x) satisfy the
condition

2.5) omy(@) _ 0mAZ)  gor all G,
o, 0x;

The importance of Theorem 1 lies in the possibility of characteriz-
ing an infinite variety of priors, namely, all the priors which define an
identifiable mixture in (2.1). Thus, once one chooses any such prior,

this determines an m(x), which in turn (working backwards) character-
izes the prior.

A characterization of N(p, ¢%). Let Y, Y;,---, Y, be a random sam-
ple of size n>1 from a normal N(g, o) and consider the sufficient sta-
tistic X=(X,, X;) for 6=(4,, 6;) where we set (see [1], p. 121)

0.2

2.6) X=37Y, X=—L3v:, 6=L£, 6=21.
i=1 2 i=1 d

Then the probability density (with respect to Lebesgue measure in R*)
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of Y=(Y;,---,Y,) given 6 can be written as

2 * 0, \™* no}
2.7 fllp, o)=r*, 2,064, 0:)= (§;> €xp <—W> exp (0,2, 0,,)
2

so that in (2.1) b(x)=1. Thus, by Corollary 4 of [1], the mixture of
(2.7) under some prior n(f) of 6 is identifiable. For a concrete appli-
cation of Theorem 2.1 in terms of y=(y,,---, ¥.), we use the following
result (see e.g., Berger [2], p. 158).

LEMMA 1. Let Yi,---,Y,, n=2, be a random sample from N(pu, o*)
and suppose the joint prior density of p and o* is given by

@8 (p, ¢')=m(¢| o')my(d®)

where m,(p|o®) is N(po Ad®) and my(c®) i8 an inverse gamma, I1G (a4, By)
with parameters a,>0, f>0, i.e., with density

g¥(t|ay, Bo)=[I"(ap)Bs] 1t~ w0tV e Vbt |

Then
(a) the joint posterior density of p and ¢° given Y=y is

(2.9) (g, o*|y)=m(p| o', Y)m(a*|y)

where n(pn|d%, y) 18 N(p(y), o)), with

(2.10) s =( AR mi+1), o= +m)et,
and m(a®|y) s an 1IG (a4, B) with

n a7 2
@1)  a=atlZl, =gty @D
(b) The marginal posterior density of g given y 8 a t-distribution with
2a,+n—1 degrees of freedom, location parameter p(y) and scale param-
eter [(A7'+n)(ay+(n—1)/2)3]!, where u(y) and B, are defined in (2.10)
and (2.11).
(¢) The marginal posterior density of o given y is my(d*|y), as previ-
ously defined.

As a corollary of Lemma 1 and Theorem 1, we obtain

PROPOSITION 1. In the motation of (2.7)-(2.11), for some real p,, 2>
0, >0, 8,>0, we have

1
(0 —1)8 ’

if, and only if, the prior density n(y, ¢*) of (u, o*) is given by (2.8) and

€12 m@)=E(ly=LE2T,  me)=E(|y=
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the absolute density of Y 1is

(2.13) fy)= fle ‘72)27’(#’ a’) ,
(g, o*|y)

which is easily seen to be a multivariate t-distribution.

Remark 2. Observe that the posterior mean vector m(y)=(m,(y),
my(y)) is not linear in y; nor is it so in terms of the sufficient statistic
(21, ;) (see (2.6)); thus, it was possible to characterize the prior for g
and ¢* (see [5], Theorem 3) without assuming a linear m(y) (it so hap-
pened here that (g, ¢*|y) and =(y, ¢*) are conjugate).

In terms of the canonical sufficient statistic X=(Xj, X;) and the
natural parameter 0=(6,, 6;), as defined in (2.6), we have the following
corollary.

PROPOSITION 2. Under the assumptions of Proposition 1,

— — ot A2, = =
2.14)  my(zx)=E(0,|x)= (it 1) afy,  my(x)=E (6,)x) =8

where a; and B, are given by (2.11), that is, in terms of x=(x,, s)

1_1_ 1 ﬁ n(n/xl—‘ﬂo)z

= —y— =

Bo 2 n 2(14mn2)
if, and only +f, the prior demsity of 6=(6,, 0,) is
ﬂ*(au ;) =n3¥(0, | o) (02)

where n¥(0,|0:) 18 N(pby, 40;) and n¥(6;) 18 a gamma with shape param-
eter a,>0 and scale parameter B,.

The specification of the marginal density of X can be given as for
Y in (2.13); the posterior density =*(6,, 6;|x) is easily found from (2.9)
and clearly the posterior density =¥(6;|x) of 6, given x is a gamma
with parameters o, and 8,. The posterior n¥(8,|x) is rather complicated.
The same is true, of course, for the marginal distribution f*(x) of X.
Nonetheless, given f(x|6) and m(x) and m,(x) as in (2.14), it is possi-
ble to identify both =n*(4,, 6;) and f*(x).

3. The discrete case

The treatment of the multiparameter discrete exponential family
of distributions is analogous to the continuous case; the operation of
differentiation (or /) is replaced by the shift operator E=(&,---, E;)
with E, the partial shift operator, i.e., E,f(2y,:++, %+ -+, Z)=F (%1, +,
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o+1,. -, @),
We can now state the analogue of Theorem 1.

THEOREM 2. With the motation and assumptions of Theorem 1 ex-
cept that mow x € I, the set of all lattice points in R® with monnegative
components, the posterior mean vector

m(z)=E[0| X=x], x €l
characterizes both n(0) and f(x).

PrOOF. E operating on f(x|6) with respect to x gives

Ef@|0)=22®) f|0)+0f(|0),

b(x)
and hence the analogue of (2.5):
Ef(x) _ Eb(x)
3.1 = .
@D @ b O

Hence, as in Theorem 1, the assertion follows.

A similar remark holds as for Theorem 1 and the analogue of (2.5)
takes the form

3.2) Em (z)=Em,(x) for all 4%j7.

Characterization of the Dirichlet distribution as a prior for the neg-
ative multinomial. For an illustration of Theorem 2, consider the neg-
ative multinomial distribution with p.f.

3.3) f@lp)=—TUT8 T g
I'(r) ;1;[1 I'(x,+1)

where we set

d d
po=1—12=1 Pi» wo=§ z, =D, DH, D).

The mixture of f(x|#) w.r.t. a Dirichlet prior =(#) is identifiable by
Proposition 1 of [1] and the assumptions of Theorem 2 are satisfied.
Hence a Dirichlet prior =(-), with
d d
(3.4) W)= O o, a=3a  (@>0)
1T~ g

can be characterized by the posterior expectation
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mx)=E@|x), wek;

this is given by

3.5 :E =__.:f_ti-_ﬂ__’ '=1,..., .
35) m(@)=E@lo=_tEl, =14

The result is summarized in

PROPOSITION 3. Let X=(X,,---, X;) be an observation from (3.3).
Then m(x) is given by (3.5) if, and only <f, the prior for p is the
Dirichlet (3.4) and the (marginal) density of X is a compound megative
multinomial distribution, Mosimann [6], defined by

@I (r+2)T(r+a) 1T Tat+)
3.6) F@ye- -, 5= :
I'(a) (P (x+a+7) E I'(a)x,!

If the a, are integers, then (3.6) becomes a multiple generalized hyper-
geometric distribution.
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