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Summary

In this paper we consider experimental situations in which v treat-
ments are to be tested in b blocks where b; blocks contain k, experi-
mental units, 1=1,---, p, k,<k;<---<k,. The idea of a group divisible
(GD) design is extended to that of a group divisible design with un-
equal block sizes (GDUB design) and then a number of results concern-
ing the E- and MV-optimality of GD designs are generalized to the
case of GDUB designs.

1. Introduction

In this paper we consider experimental situations in which v treat-
ments are to be applied to experimental units occurring in b blocks

where b, blocks contain k; experimental units, 1=1,---, p, ﬁ b,=b and
i=1

k,<---<k,. We shall use d to denote some block design which can
be used in such a setting and N(d) to denote the vxb incidence matrix
of d whose entries #,,(d) are nonnegative integers indicating how many
experimental units treatment 4 is applied to in block j. If n,(d)=0
or 1 for all +=1,-.-,v, j=1,--., b, then d is said to be a binary de-
sign. The i-th row sum and j-th column sum of N(d) will be denoted
by r(d) and k,(d). The matrix N(d)-N(d)’ (N(d)' is the matrix trans-
pose of N(d)) is referred to as the concurrence matrix of d and its
entries are denoted by 2,,(d). The statistical model assumed here for
analyzing the data obtained from a given design d is the additive two-
way classification model. This model specifies that an observation Y,
(the u-th observation on treatment s in block t) can be expressed as

Ktu=a3+ﬁz+Ettul S=1,"',’I), t=1,"',b, u=0"":nu(d);

Key words and phrases: Incidence matrix, concurrence matrix, group divisible design,
variance balanced design.
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where o, and 83, are constants representing the effects of treatment s
and block t, respectively, and E,,, is a random variable having expec-
tation zero. It is assumed that the variability of the observations ob-
tained in a given block of d is proportional to the size of the block.
Under this model, the coefficient matrix of the reduced normal equa-
tions for obtaining the generalized least squares estimates of the treat-
ment effects can be written in matrix form as

1.1) C(d)=diag (r(d),-- -, r.(d))—N(@) diag [ky(d)™",- - -, k(d) '] N@)',

where diag (a;,---, a,) denotes an mXxn diagonal matrix. The vXwv
matrix C(d) is usually referred to as the C-matrix of d and is known
to be positive semi-definite with zero row sums.

It is well known that any estimable linear combination l'a= Z.ltat

of the treatment effects must have Z}li—O i.e., it must be a treat-

ment contrast. A Dblock design in Whlch all treatment contrasts are
estimable is said to be connected and it is known that a block design
is connected if and only if its C-matrix has rank »—1. For the ex-
perimental situations we will be considering, connectedness is a de-
sirable property for a block design to have, hence we will restrict our
attention to designs possessing this property and use D(v;by,---, b,;
ki, -+, k,) to denote the class of all connected block designs having v
treatments arranged in b blocks where b, blocks are of size k,, s=1,

e, D, éb,:b and k,<k;<-.--<k,. For a given design d ¢ D(v;b;,---,

by; ki -+, ky), we shall assume that the columns of N(d) have been
arranged so that columns 1 through b, correspond to the blocks of size
k;, columns b,+1 through b,+b, to the blocks of size k,, etc. With
this in mind we shall also let N(d,) denote the portion of N(d) corre-
sponding to the b, blocks of size k,, and let d, denote the block design
having N(d,) as its incidence matrix. Then, it follows from (1.1) that

N(d)=(N(dy), N(dy),---, N(d,)),
and
1.2) kC(d)=diag [r(d)k,- - -, ro(d)k] —k "g (1/k,)N(d,)N(d.)

k {dlag [rl(dl)’ hE) T,(d,)] - (1/ k,)N (da)N (d,)'}

i M" iMe

|l

s C(dy)

where k=f[ k., r(d,) is the i-th row sum of N(d,) and C(d,) is the C-
matrix of d,. We also note that if C(d)=(c;,(d)), then
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(i) kc“(d)=k'2:l(rt(d,)k,—xﬁ(d,))/k,, for i=1,-++,v,
(1.3) and

(ii) —kcu(d)=kélu(d,)/k., for 4, j=1,---,v, i#7,

where 1,,(d,) is the (i, j)-th entry of N(d)N(d,).

The types of designs of primary concern in this paper will be re-
ferred to as group divisible designs with unequal block sizes (GDUB
designs).

DEFINITION 1.4. Let de¢ D(v;by,---,b,; k-, k,) have C-matrix
C(d)=(c,;(d)) and let k=f[ k,. Then d is called a GDUB design with

parameters m, n, A,(d) and 2,(d) if the treatments 1,2,.-..,v can be
divided into m mutually disjoint groups V,,---, V,, of size n=v/m such
that;

(i) if 4,7€V,, i#J, ke,y(d)=—2(d) for some constant 2,(d)
(if) if 1€V, jeV, s#t, then ke, (d)=—2(d) for some constant
2,(d).

Comment 1.5. The reader should note that the class of GDUB de-
signs defined in Definition 1.4 contains many of the well-known stand-
ard designs as special cases. In particular we note the following spe-
cial cases;

(i) Upon taking 2,(d)=2,(d)=2(d) in Definition 1.4, the definition
of a GDUB design reduces to that of a variance balanced de-
sign.

(ii) Upon taking p=1 in Definition 1.4 and requiring that d be
binary, then the definition of a GDUB design reduces to that
of a standard group divisible (GD) design.

(i) Upon taking p=1, 2,(d)=2(d)=4(d) and requiring that d be
binary in Definition 1.4, the definition of a GDUB design re-
duces to that of a balanced incomplete block (BIB) design.

For further information concerning and specific definitions for
variance balanced, GD and BIB designs, the reader is referred to
Raghavarao [138]. Some further facts concerning GDUB designs are
given in Section 2.

In this paper we consider the determination and construction of
E- and MV-optimal block designs in classes D(v; by,« -, by; ky,«++, k).

DEFINITION 1.6. For d € D(v;by,--+,b,; ks, ++, ky), let

0=p(d) < d)S -+ - = pro-1(d)
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denote the eigenvalues of C(d). A design d* is said to be E-optimal
in D(v; by, -+, b,; kyy+ -+, k) if for any other design de D(v;by,---,b,;
kl; Tty kp);

m(@*)Z m(d) .

Ehrenfeld [6] proved that if d*e D(v; b,---,b,; ky,---, k,;) is E-
optimal, then for any other design d € D(v; by,: -, b,; ky,+++, ky),
max var, ('a)< max var, (Ua)
" yy=0

1y =0 Uy =
t'i=1 1'l=1

where J,, denotes an m Xn matrix of ones and var,(’a) denotes the
variance of the least squares estimator l'a for the estimable function
l'a under d.

DEFINITION 1.7. A design d*e€ D(w;by,:--,b,; ky, -+, k,) is said to
be MV-optimal if for any other d € D(v; by,---, by; ky,- -+, k),

max Val‘d‘ (&1 - &j) __S_ max Val'd (&i - &/) .
i#] ixf

A number of results are already known concerning the E- and
MV-optimality of block designs in classes D(v; b,; k), i.e., see Cheng
[1], Constantine [4], [6], Jacroux [7]-[11] and Takeuchi [14], [15]. How-
ever, the only result known to the author about the E- and MV-opti-
mality of block designs in classes D(v; by, -, by; ky,- - -, ;) follows from
a result proven by Kiefer [12] and can be stated in the following way.

THEOREM 1.8. If d*e D(w;by,-++,b,; ks, -+, k) 8 variance balanced
and has C(d*) with maximal trace among all designs in D(v; by,---, b,;
k.-, k), then d* is both E- and MV-optimal in D(v; by,---,b,; ky, - -+, ky).

In this paper we further consider the determination and construec-
tion of E- and MV-optimal designs in D(v; by,---, b,; kyy-++, k). In
Sections 3 and 4, several well-known results concerning the E- and MV-
optimality of certain types of GD designs are extended to the case of
GDUB designs in classes D(v; by, «-, by; ki -+, k).

2. Preliminary facts and lemmas

In this section, we derive several preliminary facts concerning
arbitrary designs in D(v;b,---, b,; ky,--+, k,) and GDUB designs in
particular.

LEMMA 2.1. Let deD(v;by,--+, b, k-, k;) be an arbitrary de-

sign with C-matriz C(d)=(c,,(d)), and let k=f[ k,. Then the following
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facts hold for d .
(i) For any 1=1,---, 9,

FORILICACESIS

with equality if and only if d ts a binary design.
(il) If we let 6=3)bk(k,—1)v, then
=1

3 e d)S 3} 3 rid)e—Dfley= 33 bk, — 1) =15/l

with equal of and only +f d is binary.
(ili) If we let ¢ be defined as in (ii), then

min ke, (d)<c .
15isv
ProoF. We shall only prove (i) since the proofs of (ii) and (iii)
are similar.
(i) Simply observe that
culd)=33 euld) =3 {(rd ki~ Z(d) k)
by
=3 {fr,,(d,)k — (z nd, )2) /k}
=3 {n(d.)k (53 ma@) ]

s {ri@)(k,—1)/k.}

"M‘ |

where the inequality follows because all the n,(d,) are nonnegative

integers and the last equality follows because é r,,(d):j}f__‘_‘ k,d). Clearly
i=1 =1

we will have equality in the above expression if and only if n(d,)=0

or 1 for all +=1,.---,%, j=1,..-,b, and s=1,---,p

For the remainder of this section, we shall be considering GDUB
designs. In all further discussion of GDUB designs, it will be assumed

that the treatments 1,2,-.-,v have been labeled so that treatments
1,---,n form the first group, treatments n+1,-..,2n the second
group, ete.

Our next lemma contains some basic facts about GDUB designs
which are used in the next section. Since these facts are easily proven,
the lemma is stated without proof.

LEMMA 2.2. Suppose d € D(v; by,++,b,; ky,+++, k) ©8 a GDUB de-
sign with C-matriz C(d)=/(c,(d)), parameters m, n, 3,(d), 2;(d) and let
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Then the following facts hold for d;
Zz(d)>0, i.e., Zg(d)zl, 2, 3, teey,
A(d)=33 2u(d.)- (efky)

A@)= 2 i) (efly)
For 1=1,2,---,v, and some constant ¢,

ke(d)=c=(n—1)A,(d) + (m—1)niy(d)
=—1),(d)+(m—1L)n(2(d)— 2,(d))
=(v—1)2(d)+(n—1)(2(d) — 2:(d)) ,

<k i bk, —1), with equality if and only if d is binary.

If |2(d)—2,(d)|=1, then min {2,(d), 2:(d)} =[c/(v—1)] where [-]
denotes the greatest integer function.
The eigenvalues of C(d) are

0 occurring with multiplicity 1,
€+ A1(d)/k occurring with multiplicity m(n—1), and
vA(d)[k occurring with multiplicity m—1.

If W(d)s4(d), then p(d)=(C+2(d)/k, and if A(d)2(d), then
> (@A) =vad)/k.
If treatments © and j occur in the same group

var, (&, —a,) =2kd*/(¢+ A,(d))
and if treatments 1 and j occur in different groups,
var, (&—a,)=(2ks’/(¢+ A(d)))(1 — (A(d) — 4,(d))/(mn2y(d))) .
If 2(d)<2,(d), then
Max var, (@—a,)=2kd*/(c+ 2,(d)) ,
and if 2,(d)>2y(d), then
max var, (&,—&,)=(2ks"/(c+ 4(d))(1 - ((d) — 1(d))/(mn2(d))) .

3. Results on the E-optimality of GDUB designs

In this section, we give our main results concerning the E-optimal-
ity of GDUB designs in classes D(v; by,---, b,; ky,---, k,). For conve-
nience, we shall assume throughout the sequel that
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kv for all s=1,2,...,p.

We begin by stating a result which can be proven using techniques
analogous to those used in Constantine [4] or Jacroux [9].

LEMMA 3.1. Suppose deDw;b,---,b,; k-, k) has C-matriz
C(d)=(ci/(d)).
(i) For any i#j,
pi(d) = (ci(d) +c44(d) —2¢,4(d))/2 .

(ii) If M s some proper subset of m treatments out of 1,2,---, 9,
then

DS E/(mE-m))(S el D+ 3, 5 eu(@)

J#i

Our first theorem concerning the E-optimality of GDUB designs is
a natural extension of a result proved by Takeuchi [14] for GD designs.

THEOREM 3.2. For D(v;by,---,b,; ky,- -, k), let z denote the greatest
common divisor for klk,,---,klk, and suppose klk,=zz,, s=1,---,p.
If d*eD(v; by, b,k k) 18 a GDUB design which is binary
and has 2,(d*)=2,(d*)+z, then d* is E-optimal in D(v; by,---, b,; kyy- - -,
k,).

Proor. For any deD@;by,---, b, ky--+,k;) and any 1=Zi=w,
observe that

keu(d)= 3 ((rdd ke~ 2d )]
—2 i} {rd)ede,— Ad)a}
and for all 1#7
—ke,,(d)=2 i 2,(d)z, .

Hence every entry of C(d) can be written as a multiple of 2z and cor-
responding to each d e D(w;by,---,b,; ky,- -, k,) we have a matrix C(d)

=(1/2)C(d). Clearly the matrix kC(d*) corresponding to the GDUB de-
sign d* satisfying the conditions of the theorem has integral off-diagonal

entries 1,(d*)=1,(d*)/z and 1,(d*)=2(d*)/z such that 2,(d*)=2(d*)+1.
Also it should be observed that for any de D(v;by,---, by kyy---, k),
the eigenvalues of C(d), denoted by

0=g@)<md)="--=f,(d),
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are related to those of C(d) by
A(d)=p(d)/z, for 2=1,2,...,v—1.

Hence, to prove the theorem, it is enough to show that for any de
D(’U; bly' ] bp; kb‘ ) kp);

Ad)= d>) .

From these arguments, for purposes of proving the theorem, we
can assume without loss of generality that z=1, i.e., that k/k,,---, k/k,
are setwise relatively prime. We shall assume this to be the case for
the remainder of this proof.

So let d e D(w; by,-+-,b,; k- -+, k;) be arbitrary with C-matrix C(d)
=(c,;(d)). We now consider several cases for C(d).

Case 1. Suppose ke, (d)<¢ for some i. Without loss of generality,
we may assume

key(d)<c—1.
By Lemma 3.1 (i), for each j=>2,
(@) =(eu(d) +¢,,(d) —2¢,,(d))/2,
and by Lemma 2.2 (viii),
p(@%)=(C+2,(d%))/k .
Thus for d to have u,(d)> u,(d*), it must have for each j=2,
¢+ 2(d*) <k(cu(d)+c;(d)—2¢,(d))/2 ,
which implies that for each j>2, d must have
¢+ 2(d*)+ (1/2) Sk(eu(d) +c,4(d) —2¢,,(d))/2 .

Now, using Lemma 2.1 (ii), Lemma 2.2 (iv) and the above arguments,
it also follows that d must have

(= 1)(G+2(d¥) +(1/2) =18 — (v/2) + (2n—1)/2
S (/2) 33 (ou(d) +0,,(d)—201, ()

=(k/2) {(v—1)cn(d)+ 12 ¢, (d)—2 ;2 cu(d)}

=(1/2) {vkcu(d)+k jf:‘l cu(d)}

=(1/2){v(c—1)+we}
=vc— (1)/2) ’
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which is a contradiction since #=2. Thus, in this case, d must have
ed) = p(@*).

Case 2. Suppose ke (d)=¢ for i=1,--+,v. If key(d)=c for i=1,
-++, v, then it follows that

ke (d)=c for ¢=1,...,v

since by Lemma 2.1 (ii), ki‘,ca(d)gvé. Now, for d to have g (d)>
w(d*), it must have by Lemma 3.1 (i), for all 1%y,

k(c.(d)+ec,,(d) —2¢,(d))/2=kc—Fke,(d) =c+ A,(d*)+1 .

But then, using Lemma 2.1 (ii), Lemma 2.2 (iv) and the inequality
given above, this implies that d must have

(w—1)@E+ 2,(d*)+1)=v6+(n—1)
< (12) 33 (cu(d)+04,(d) — 201,(d)

= jz G—key,(d)=(—1)e—k ;’3 or,(d)=1% ,

which is a contradiction. Thus d cannot have g (d)>x(d*), and the
result follows.

Example 3.3. Consider the class of designs D(6; 4, 3; 3, 4), and let
d, and d, be the GD designs SR18 and S1 given in Clatworthy [3], i.e.,
d, is a GD design having parameters v=6, b,=4, k,=3, r(d,)=bk,/v=2,
m=3, n=2, A(d)=0 and 2,(d,)=1, whereas d, is a GD design having
parameters v=6, b,=3, k,=4, r(d,)=bk:/v=2, m=3, n=2, 2,(d;)=2 and
2(d))=1. Now let d* be the design having N(d*)=(N(d,), N(d;)) and
observe that z2=1 is the greatest common divisor for k,=3 and k,=4
and that d* is a binary GDUB design in D(6; 4, 3; 3, 4) having para-
meters m=3, n=2 and

31(d*) = kzxx(dl) +k111(d2) =4.043-2=6
lz(d*) =k222(d1) +k122(d2) =4 -1 + 3 . 1 = 7 .

Since 21,(d*)=2,(d*)+2, we have by Theorem 3.2 that d* is E-optimal
in D(6; 4, 3; 3, 4).

The next two theorems are extensions of results proven in Cheng
[2] and Jacroux [11]. Since the proofs of these theorems are quite
similar to the proof of Theorem 3.2, the results are stated without
proof.

THEOREM 3.4. For D(v;by,--«,b,; ky,--+, k), let z and 2z, be as de-
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fined in Theorem 3.2 for s=1,---,p. If d*eDw;by,---,b,;ky,--+,k,)
18 @ GDUB design which is binary and has m=v/2, n=2 and A,(d*)=
4(d*)—z, then d* is E-optimal in D(v;by,---, b,; kyy+ -+, k).

THEOREM 3.5. For D(v;by,--+,b,; k.-, k), let 2 and 2, be as de-
fined in Theorem 3.2 for s=1,---,p. If d*eD(;by,---,b,;ky,---,k,)
18 a GDUB design which is binary and has m=2, n=v/2 and A,(d*) =
A(d*)+2z, then d* is E-optimal in D(v; by,---, b,; ky,++ -, k).

We now give two examples illustrating the usage of these last
two theorems.

Example 3.6. Consider the class of designs D(10; 40, 25; 2, 4), and
let d;, and d;, be the GD designs R36 and R108 given in Clatworthy [3],
i.e., d; is a GD design having parameters v=10, b,=40, k,=2, r(d,)=
bk/v=8, m=5, n=2, 2(d,)=0, Ay(d))=1 and d, is a GD design having
parameters b,=25, k,=4, r(d;)=bk,/v=10, m=5, n=2, A(d))=6 and
A(d;)=3. Now let d* be that design having N(d*)=(N(d,), N(d;)) and
observe that z=2 is the greatest common divisor for k=2 and k,=4
and that d* is a binary GDUB design in D(10; 40, 25; 2, 4) having
parameters m=>5, n=2 and

ll(d*) =k221(d1) +k111(d2) = 4 . 0 +2 . 6———' 12
22(d*) - kzxg(dl) +k112(dz) = 4 * 1 + 2 . 3 - 10 .

Since 2,(d*)=4,(d*)—z, we have by Theorem 3.4 that d* is E-optimal
in D(10; 40, 25; 34).

Example 3.7. Consider the class of designs D(6; 18, 14; 2, 3) and
let d, and d, be the GD designs SR7 and R45 given in Clatworthy [3],
i.e., d; is a GD design having parameters v=6, b=18, k=2, r(d)=
bki/v=6, m=2, n=3, 2(d,)=0 and 2,(d,)=2, whereas d, is a GD design
having parameters v=6, b,=14, k;=3, r(dy)=bJ;/v="T, m=2, n=38, A(d,)
=4 and 2,(d,))=2. Now let d* be that design having N(d*)=(N(d),
N(d;)) and observe that z=1 is the greatest common divisor for k,=2
and k,=3, and d* is a binary GDUB design in D(6; 18, 14; 2, 3) having
parameters m=2, n=3 and

4(d*) =k, 2(dy)+ kA (dy)=3-0+2-4=8
zz(d*) = kglg(dl) +k112(d2) = 3 . 2+2 . 2= 10 .

Since 2;(d*)=2,(d*)+22, we have by Theorem 3.5 that d* is E-optimal
in D(6;18,14; 2, 3).
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4. Results on the MV-optimality of GDUB designs

In this section, we prove that some of the GDUB designs estab-
lished in Section 3 as being E-optimal are also MV-optimalin D(v; b,,- - -,
bp;kly"'i kp)' .

We begin by stating a preliminary lemma which can be proven
using techniques analogous to those used in Jacroux [10] and Takeuchi
[14].

LEMMA 4.1. Let deD(v;by,---,b,; ki, -+, k) be arbitrary. Then
Sfor any i#7, .
var, (@, —a,) 2 a*(ci(d) +¢;(d) +2¢.4(d))/(ci(d)c, (d) —ci5(d)?)
=4d%/(c.(d)+ cjj(d) - zctj(d)) .

Our first theorem extends a result of Takeuchi [14] concerning the
MV-optimality of GD designs having 1,(d)=1,(d)+1 and equal block
size to corresponding GDUB designs in D(v; by, -, by; by, -+, k).

THEOREM 4.2. For D(w;by,---,b,; k- -, k), let z denote the greatest
common divisor for kfk---,klk, and suppose kjk,=zz, for s=1,---, p.
If d*e€ D;by,---,b,; kyy--+, k) 18 a GDUB design which 18 binary and
has 2,(d*)=2,(d*)+z, then d* is MV-optimal in D(v; by, -+, b,; ky, -+, ky).

Proor. Using the same arguments as those used in the proof of
Theorem 3.2, for purposes of proving the present result, we need only
consider the case when z=1. By Lemma 2.2 (ix),

ntlajx var, (a,—a,)=2d"k[(c+ 4,(d¥)) .

#

So let d € D(w; by,---, b,; ky,+++, k,) be arbitrary with C-matrix C(d)=
(ci/(d)). We now consider two cases for C(d).

Case 3. Suppose ke, (d)<¢ for some i=1,---,v. Without loss of
generality, assume

key(d)ysec—1.
By Lemma 4.1, for d to have

max var, (@, —a,;) Smax var,. (a,—a,) =24'k/(c+ A,(d*)) ,
25730 i#J

it must have for each 7=2,
4/(cu(d) +c,5(d) —2¢,,(d)) < 2K/ + 2,(d*))
which implies that for each 7=2, d must have
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k(cu(d)+ ¢, (d) —2¢,(d))/2zC+ A,(d*¥)+1/2.

But it was shown in the proof of Theorem 3.2 under Case 1 that this
last inequality cannot hold for each j=2. Thus, in this case we have
that d cannot be MV-better than d*.

Case 4. Suppose ke (d)=c¢ for i=1,---,v. As in the proof of
Theorem 3.2, ke, (d)=¢ for i=1,...,» implies that kc,(d)=c for i=1,
--+,v. Now, for ¢=1, since kc,(d) is an integer for j=2,..-,v, cy(d)

=—j$v‘_, ¢y (d)=ck and since by Lemma 2.2 (vi), 4(d*)=[¢/(v—1)], it fol-
=2
lows that for some j=2, —kcu(d)gllgd*). Hence for this value of j,

k(eu(d)+c,,(d)—2¢,(d)) /2= (26 — 2¢y;)[2=C+ 2,(d*)
and by Lemma 4.1,
var, (& —a,) = 4d*/(cu(d)+ ¢, (d) —2¢,,(d)) = 2ka*/(c+ 2,(d*)) .
Thus again d cannot be MV-better than d* and the result follows.

Ezxample 4.3. Consider the class of designs D(6; 4, 3; 3, 4) and let
d, and d, be the GD designs given in Example 3.3. Then the design
d* having N(d*)=(N(d,), N(d,)) satisfies the conditions of both Theorems
3.2 and 4.2, hence d* is both E- and MV-optimal in D(6; 4, 3; 3, 4).

In the next theorem, we show that the GDUB designs proven in
Theorem 3.4 to be E-optimal are also MV-optimal in D(v; b,,---, b,; ki,
-++,k;). Since the proof of this theorem is similar to that of Theorem
4.2, the proof will be omitted.

THEOREM 4.4. For D(v;by,--+,b,; ky,- -+, k,), let z and 2, be as de-
fined in Theorem 4.2 for s=1,---,p. If d*eDw;by,--+, by ky--+, k)
18 @ GDUB destgn which is binary and has m=v[2, n=2 and 2,(d*)=
A(d*)—z, then d* 18 MV-optimal in D(v;by,- -+, b,; kyy« -, k).

Example 4.5. Consider the class of designs D(10; 40, 25; 2, 4) and
let d; and d, be the binary GDUB designs given in Example 3.6. Then
the design d* having N(d*)=(N(d,), N(d,)) satisfies the conditions of
both Theorems 3.4 and 4.4, hence d* is both E- and MV-optimal in
D(10; 40, 25; 2, 4).

Comment 4.6. A number of sufficient conditions for the E- and
MV-optimality of GDUB designs in classes D(v;by,--+, b,; k.-, k;)
have been obtained in this paper. However, methods of constructing
GDUB designs which satisfy these sufficient conditions need to be de-
veloped. Some such methods have already been derived by the authors
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and are similar to the techniques illustrated in Examples 3.3, 3.6 and
3.7. A list of E- and MV-optimal GDUB designs having parameters in
the practical range is also being tabulated. These results will be re-
ported elsewhere.
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