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Summary

The problem of testing for constant hazard against a change-point
alternative is considered. It is shown that this problem is related to
another one in quality control. Based on this relationship, a test is
proposed. The main advantages of this test are its computational sim-
plicity and the ready availability of small and large sample distribution
theory.

1. Introduction

We consider the problem of testing for constant hazard against a
change-point alternative. Let T\, T,---, T, be independent and identi-
cally distributed (iid) lifetimes of #» subjects with common hazard func-
tion

(1) h(t)=aIp,o() + 21— &) Lc,5(t) »

where Iy is the indicator function of set S, 2 (A1>0) and ¢ (05¢<1)
are two unknown constants, and r is the unknown change-point where
an abrupt change occurs in the hazard function. Matthews and Farewell
[7] applied this model to the data of times-to-relapse after remission
induction for patients with leukemia, where it is suspected that the
relapse rate may be reduced after an unknown period of time r. They
examined, by simulation, the behavior of the likelihood ratio test for
H,: £¢=0 (no change-point) against H;: £>0. It is clear that the clas-
sical asymptotic result for likelihood ratio statistics does not apply here
because of the discontinuity present at r. Matthews, Farewell and Pyke
[8] proposed a test based on a score-statistic process and showed that
its asymptotic behavior is related to the supremum of an Ornstein-
Uhlenbeck process. However, the null distribution of this test depends
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on 2 and two pre-assigned bounds r, and r, for the change-point z.

This problem (called Problem A hereafter) is related to another one
in quality control. Suppose that one observes » independent random
variables Y, Y, Y, with Y,,---, Y,~iid (E£(2)) and Y,.y,--+, Y, ~iid
(E(A(1—¢))) where k is the unknown change-point, E(1) denotes the
exponential distribution with failure rate i. The problem is to test
for H/: £=0 (no change-point) against H/: £>0. We will refer to this
problem as Problem B. References to different variations of Problem
B may be found in three review papers by Hinkley, Chapman and
Runger [4], Shaban [9] and Zacks [10].

The relationship between these two problems is given in Section 2.
Based on this relationship, a test for Problem A is proposed in Section
3. The main advantages of this test are its computational simplicity
and the ready availability of small and large sample distribution theory.
In Section 4, some efficiency results are presented.

2. Relationship between Problems A and B

Let p=1—exp(—ir)=P(T\<7) and 0=2(1—¢). Under H,, i=6
while r and p are not uniquely defined. Denote the order statistics of
Ty, T, by T, 2=1,--+,n. Setting T,=0, define the normalized
spacings by

(2) Di=(n—1+1)(Twy—Tq4-») » 1=1,--4,m.

It is well known that the normalized spacings are iid (E(2)) under H;;
i.e., L(Dy+++, D,|H)=L(Yy," -, Y,|H)) where L(X) denotes the distri-
bution of random vector X.

To see the relationship between the two problems under the alter-
native hypotheses, we present a useful representation of 7, in the gen-
eral case of 1#6. Let Vj,---,V, be iid (E(1)). Thus,

AV, Viir
(3) ={ )
0~ (Vi—2ar)+7, otherwise

are iid with common hazard function (1). Again, denote the order
statistics of V,---,V, by Vi, i=1,---,n. Let K be the number of
T, not exceeding r. Setting V=0, we have Dg,,=(n—K)[07' (Vg
—27)—27'(Ver,—27)] and
{ 'z-l(n—i_{—l)(‘,(t)’_’.v(i—-l)) ’ i=1v ) K
(4) Di=
0 n—i+1)(Veo—Vior) ,  i=K+2,---,m.

If K were a constant, we would have D,,.--, Dg~iid (E(2)) and Dg,,,
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++, D,~iid (E(6)). This suggests that D,,---, D, in Problem A play the
role of Y,---,Y, in Problem B, and K in Problem A correspond to %k
in Problem B. More precisely, since K is binomial (n, p=p=P(T\<7)),
it follows from the central limit theorem that P(K/n—p|>Cn%)—0
as n— oo, if C,— oo (e.g., C,=logn). So, with probability approaching
1 as n— oo,

A m—14+1)(Veio—Viuop) » 1=1,--., [mp—C,n'
0~ m—i+1)(Veo— Vo) » i1=[np+Cn'*,- -, m.

Loosely speaking, {D;:1<i=<[np—C,n'?]} are asymptotically iid (£ (1))
while {D;: [rp+Cn'?]<t<n} are asymptotically iid (E£(f)). Moreover,
it is not too difficult to show that for any fixed integer m >0, Dg_,,
.-+, Dy are asymptotically iid (E(2)) and Dg,s, -+, Dx,n are asympto-
tically iid (E(4)). (In fact, conditioning on K=7», T ,p—7,+++, Tew—7
are the order statistics of (n—7) iid (£(6)) random variables and hence
D, -, D,~iid (E(6)).)

3. A test for Problem A

In Problem B, when 21 is known, Kander and Zacks [6] proposed,
based on a Bayesian approach with a uniform prior on the change-point

k, to reject H if li‘,(i—l)Y, is large. A natural generalization of
this test to the case of A unknown is to reject H; if ﬁ} (i—-1)Y, En} Y,
i=1 i=1

is large (cf. (2.4) of Hsu [5]). Based on the relationship in Section 2,
we therefore propose to reject H, if

(5) Sn:‘]:'[yn‘-: (i"‘l)Dt 5”3 Dt+n+1:| =§‘_. <-"'—> T(i) i T(n
2n Li=1 i=1 i=1 \ N i=1
is large.

Define Z,=(n—14+1)(Vi,—Vy-p), t=1,-++,n, which iid are (E(1)).
Under H,, from (3),

S=1-3 (2=2)z/3 2,
i=1\ 2n i=1
and by (5.5.4) on page 103 of David [3], S, has pdf

(6) fs 61 H)=3 wf(1-9),

where d,=(n—1)/2n, 1=1,-.-.,n—1, w¢=d?”/’]'[t(d¢—d,.), i=1,-+-,m—1
#*

and
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(n—1)d;'1—y/d)**, O=sy=d,
fiy)=

0, otherwise .

While formula (6) provides a way to compute the exact levels of signi-
ficance, numerical results show that the asymptotic normal approxima-
tion appears quite accurate for #=10. See Table 1 of Hsu [5].

In what follows, we will study the asymptotic behavior of S,. Let
H(4, &, ) denote the alternative hypothesis with parameter values 2, &
and . Part (i) of the following proposition provides an asymptotic
test procedure while part (ii) is used to derive efficiency results in Sec-
tion 4.

PROPOSITION 1.
(i) L((48n)(S,—3/4)| H)-Z. N(0, 1).
@ii) For &,=(c+o())n 12 ¢>0,

L((48n)(S,—3/4) | Hi(2, &, 7)) -2 N(VB co(1—p), 1),
where p=1—exp (—At).

PrROOF. Part (i) is essentially a special case of part (ii). For (ii),
since _L(S,| Hi(, &, 7))=L(S,|H|(1, &, 7)), 2 may be assumed equal to
1 without loss of generality. To prove (ii) with 21=1, &,=(c+o(1))n'2
and 0,=1—¢,, let K again be the number of T;<7, and note that
from (3),

(1) i

2
1m

=2 V(i)+(0 l_1) 2 —(Vm—T)

z: +7’Z,+(01 1)(n—K)(3n+K+1)/(4n)

+0:'-D)[ 3 L (Vo—0)—(—K)@n+K+1)/dn)|

n

(8) ié E (t)+(0 l—1) 2 (V(n—f)

3 2+ —D(n—K)+ (05~ 3} (Veo—)—(n—E)] -

To complete the proof, we need the following lemma.

LEMMA 2.

n-m[ —(Vm -;)—(n—K)(3n+K+1)/(4n)]=Op(1):

1=K+
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w3 (Vo—1)—(1—K)|=0,1) .

Proor. Conditioning on K=7», Vig,h—7,+++, Viny—r are the order
statistics of (n—r) iid (£(1)) random variables, and so

£(, 33, L (Veo—1)— (n—K) -+ K+1)/(4m) | K=r)

—I(:‘g}’ 'n+2r+z (Z— 1))
.L’(é:“ (Vm—r)——(n—K)IK=r)=.£'<§:(Z‘——1)) :

From Donsker’s invariance principle (Billingsley [1]),

sup {ln-wg (Z‘—l)lz 1gr_s_n} =0,(1),

and so
sup |n2'S3 ”‘_—”'_-i(z,_nl
0srsn—1 i=1 n
= sup n|' S n”‘/’ >} (Z—1)| < sup 3 (Z—1)| =0,Q1) .
0srsn—-1 = 1sr3n iz1
Hence,
sup |n1n'S] RAETEL (7 1)|
0srsn—1 = 2n
= sup |nn’s 2R=(0—r—9) 7 1)!
0srsn—1 =1 2n
< swp [0S (Z—1)|+ sup |n2S R=T=0 (z 1| =—0,),
1sSrsn—1 i=1 0srsn—1 i=1 2n

which implies the lemma.

CONTINUATION OF THE PROOF OF PROPOSITION 1. From (7), (8) and
Lemma 2, and using K/n=p+0,1),

nt 5 gt 5 I g Sy M (7
=n = oo
U P

=3j4+n-t 3} ”2;7' (Zi—1)+n"Ve(1—p) (3+p)/A-+o (") ,

1t 31T =140 33 (Z—1)+n-o(1—p) +o,(n") .
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So,

S,=8/4+n" 3 %:L” (Zi—1)+n"Vicp(L—p)/A+o0,(n17) .
=

4

The proposition follows by applying Lemma 1 of Chernoff, Gastwirth

and Johns [2] and n“i (27;_'"’ >2—->1/48.
=1\ 4n

4. Some efficiency results

To see the effect of the change-point = on the performance of S,,
we consider the score test for H, against an alternative with known
change-point. Let Hi(z))={H(4, &, 70): A>0, 0<£<1} be the alterna-
tive when r is known equal to r,. Then, the score test for H, against
Hi(z,) is (cf. (10) of Matthews et al. [8])

(9)  Au(z)=2(L—exp (—1ry)) ™" exp (dry/2)n " téﬂ (To—7e—17"),

where ﬁ:n/ i‘, T, and K is the number of T,<z,. Clearly 4.(z,) is as-

ymptotically standard normal under H,. For &,=(c+o(1))n""* and fixed
A and 7,, using (3)

=2t 3 Vi o [(1— &) —1n ! . é} . (Vio—479) ,
i=1 =K+

31 (Tawo—to—2)=2""1—£)" 3 (Vio—ir)—i(n—K) .
i=K+1 i=K+1

Let a(x)=max (x—1z,, 0) and b(x)=0 or 1 according to whether 2=
Az, or not. Thus, Ea(V)=exp (—Air))=1—p, EbV,)=1—p,, and note

that 3} (Veo—2r)=n(l—p)+32 @V —1+p1), n—K=n(l—p)+ 3 (b(V)
-_ 1 +Po) . SO,
1= [l ell—pon 03 (Vim Doy n)
i=1
and

n a
n2 i_;ﬂ (Twy—7o—47Y)

=27 ep(1— o) +174% 33 [a(VO bV —(A—p) (Vi D]
2+ NG opL—pr), 201 p0) -
Since A(1—exp (—1r9) " exp (iro2)= A6 (1= "+ 0,(1),



10)

TEST FOR CONSTANT HAZARD 383

L(Au(z0) | Hi(R, &, 79) 2> N(cloo(L—po))*%, 1) -
Denote by ARE (z,) the Pitman asymptotic relative efficiency of S,

with respect to 4,(r,) (against H(z,)). From Proposition 1 and (10),
ARE (r9)=3py(1—p). The ARE (z,) attains the maximum 3/4 at p,=1/2
(i.e., ro,=the median) and it decreases to 0 as p, tends to 0 or 1. So,
as expected, the effect of the change-point 7, is rather significant when
it occurs very early or late.
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