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Summary

Distribution of sum of vectors of 0-1 random variables is discussed
generalizing the univariate results obtained in our previous article
Takeuchi and Takemura (1987, Ann. Inst. Statist. Math., 39, 85-102).
As in our previous article no assumption is made on the independence
of the 0-1 random variables.

1. Introduction

In our previous article (Takeuchi and Takemura [4]) we discussed
sum of 0-1 random variables. Our discussion was restricted to the
univariate case. Here we extend the results to the multivariate case.
We consider sum of vectors of 0-1 random variables, which are indicator
functions of several categories. First we consider the case, where the
categories are not mutually exclusive (Section 2). Then we consider the
multinomial case, where the categories are mutually exclusive (Section
3). Although the first case can be reduced to the second case by con-
sidering all the intersections of categories as separate categories we can
obtain more meaningful results by preserving the relations among the
categories. The results are especially simple when the categories are
close to being independent.

In Sections 2 and 3 our development is carried out for the bivariate
case (k=2) to avoid excessively cumbersome notation. Most of the re-
sults can be written down for more than 2 dimensions in an obvious
way. However there are a few results in Section 2 which are partic-
ularly simple in the bivariate case. These results will be mentioned
explicitly. _

As in the univariate case the main point of this article is that we do
not assume any condition on independence among 0-1 random variables.

Key words and phrases: Binomial distribution, central binomial moments, finite exchange-
ability, orthogonal polynomials.
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Our main tool is again the central binomial moment appropriately gen-
eralized to the multivariate case. It will be seen that our previous
development of the univariate case can be extended to the multivariate
case with only slight modifications. Therefore we will concentrate on
differences between the univariate and the multivariate cases and give
a rather brief discussion when the developments are entirely parallel.

In the multivariate case we need more elaborate notations. For
the most part we will use notational conventions which closely corre-
spond to those of the univariate case. This makes generalizations of
the univariate results transparent.

2. Sum of vectors of 0-1 random variables

In this section we consider a generalization of the results in
Takeuchi and Takemura [4] to multivariate case. For notational sim-
plicity we restrict our development to the bivariate case. Most of the
results can be stated for more than 2 dimensions with obvious modifi-
cations. However there are a few results which are particularly simple
for the bivariate case and do not generalize to more than 2 dimensions
immediately. See Lemma 2.2 and Remark 2.2 below.

2.1 Notations and definitions

Let U, V,, i=1,--+, n, be 0-1 random variables and let X,=(U,, V,),
t=1,--.,n. Let S=(S,, Sz)'=_§‘, X, be the sum. No assumption is made
on the dependence among Ch’£=;nd Vis. Let
(2.1) Pipniispns,=Fr (U =1,--+, U, =1, V, =1,.--, ¥V, =1)
and let

1

_n_n—_ t1<§}<ilc jl<§<ll pivm’ik;h’m'” ’
k/\1

for k=1 or =1, and p,0,0)=1. This corresponds to p,(k) (formula
2.2 of Takeuchi and Takemura [4]) of the univariate case. For any
nonnegative integer k let a*®=x(x—1)---(x—k-+1). The mixed (k,1)
factorial moment of S is denoted as pq,,,=E(SS{). Then as in Lem-
ma 2.1 of Takeuchi and Takemura [4] we have

(2.3) Lo, =Nk, 1)

(2.2) Pk, V)=

This can be easily proved by considering the expected value of (3 U,
U ) Vy,+--V,). See the proof of Lemma 1.4.1 of Galambos [1]
for detail.
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Remark 2.1. In the univariate case p,(k) was defined to be invari-
ant with respect to permutations among X’s. This corresponds to the
finite exchangeability. In the present case the invariance in the defi-
nition of p,(k,l) is with respect to the product group of permutations
among U’s and permutations among V’s. This contrasts with the usual
exchangeability where the invariance is with respect to permutations
among X’s. However in the next section, where we discuss a gener-
alization to the multinomial case, the finite exchangeability is again
appropriate.

Now we define bivariate central binomial moment as follows. Let
D =p1|(17 0): p-1=p,,(0, 1)- Then

qn(Os 0) =1,
2.4)

0 =3 3 (-1 %)(} et oime—i, 1-h),
k=1 or lz1.

Formally g¢,(k,!) is the mixed (k,l) moment about the mean when p,(k, 1)
is regarded as (k, l) moment about the origin. Lemma 2.4 below shows
that in certain cases this interpretation is legitimate. In any case (2.4)
can be easily inverted to yield

k l
(2.5) ne D=3 5 (%)(} ot phal—3,1=h)
Now let the probability generating function of S be
(2.6) G0, 0))=3 21 01 0 Pr (Si=F, S,=1) .

Then M,(6;, 6;)=G,(1+0,, 1+0;) is the factorial moment generating func-
tion :

@ MG, 0)=3 3 =25 (7)(7)nomde .

The bivariate central binomial moment generating function Q,(6,, ;) is
defined as

2.8) Q0. 0=33 (T)(T Joroiautl, 1 -

Then using (2.5) and (2.7) we obtain after rearrangements

(2.9) M(6,, 6:)=(1+p.0,)"1+P..0,)"Qn < 1+i, 6, 1+0; 0 > )
1.U1 Ve

See Lemma 2.3 of Takeuchi and Takemura [4] for detail. Letting ;=
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0,/(1+42.6), t.=0,/(1+p..6,) and solving (2.9) for @, we obtain

2.10)  Quzy rg)=(1—p,.r,)"(1—p.,rz)"M,.( TR )
l—pl.fl l—p.x‘l'z

As in the univariate case q,(k, l) can be interpreted as representing
deviation from independence. This point is illustrated by the follownig
four lemmas.

LEMMA 2.1. S, and S; are independent if and only if

(2.11) 0k, 1) =q,(k, 0)g.(0, 1) .

Proor. If S, and S, are independent s, ,,=E(S®SP)= pret o, -
From (2.3) we obtain p.(k, l)=p,(k, 0)p,(0,1). Substituting this into
(2.4) we obtain (2.11). Conversely assume (2.11). Then Q,(4,, 6;)=
Q.(0:, 0)Q,(0, ;). Hence

M6, 0:;)=(1 +p1-01)"Qn(01/(1 +9..6), 0)(1+4..0,)" Q.(0, 0:/(1+p..6,)) .
This proves that S, and S, are independent.

Let X,=(U,, V}) be i.i.d. random vectors with Pr(J,=1)=p.., Pr(V,
=1)=p., and Pr (U,=1, V,.=1)=py, i=1,---,n. Let =3 X,. We call

the distribution of § bivariate binomial distribution with parameters n,

Di» Day Pu. Denote py=p.—pu, Pu=0.—DPu, Pu=1—Dw—Pu—Dy. The
following lemma characterizes this distribution.

LEMMA 2.2. S has the bivariate binomial distribution +f and only if
qn(kr l)=07 for k?’zl,

(2.12)
0o, 0=2"/(%)

where 4="1p,Dy— PP

PROOF. The factorial moment generating function of S is given as
Mn(on 0:)=Q140,p..+6:0..+ 0,0, 011)" .

The lemma holds if and only if M,(8,, 6;)=M,(6,, 6;). Using (2.10) this
is equivalent to

Q.71 )= —pr.7)" (1 —D.17y)"

X <1 + 710 + TP + T1T9Pn >"
1—p1~7'-1 l_p.ﬂ'z (1—1)1.1'1)(1—?.11'2)
=1+ @Pu—p.p.)r17)"
= (1 + ATITZ)" .
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Expanding the right hand side and equating the coefficient of z}r; we
obtain the lemma.

Note that in the bivariate case only the diagonal terms remain in
Q,. In more than 2 dimensions we obtain various cross terms and the
result is not as simple as in the two dimensional case. Combining the
above two lemmas we obtain

LEMMA 2.3. S, and S, are independent binomial random wvariables
if and only if q.k,1)=0 for k>0 or 1>0.

Finally the following lemma gives a justification for calling ¢, as
a moment.

LEMMA 2.4. Suppose that S=(S;, S;) 18 a mixture of independent
binomial random variables with random success probabilities P, and P,.
Then

vk, )=E(P{Py) ,
q.(k, ) =E{(P,—E(P))"(P,—E(F))'} .
PROOF.
Diyeortyiiyenn s, =BE@T (Uy=+-- =V, =1| P, P,))=E(P}FP}) .
Hence p.(k, )=E(P*P}). The second equality is now obvious.
2.2 Approximation by binomial distribution
Lemma 2.3 suggests that if q.(k,l)’s are small, then the distribu-
tion of S=(S,, S;) can be approximated by direct product of two bi-

nomial distributions. Actually using the orthogonal polynomials with
respect to the binomial distribution this approximation can be explicitly

written down. Let pzn(x; n, p)= <: )p’(l— p)*~* be the probability func-

tion of binomial distribution and let L%(x; p)=(d’/dp')psn(2; n, D)/Pen(2;
n, p) be the j-th Krawtchouk polynomial. Then we have

THEOREM 2.1.
(2.13) Pr(S;=w=, S,=y)=ps~(2; 1, . )Psx(Y; My D)

x (313786 D s )Ly p.l)} ,
k=0i=0 [L!l!

(2.14) Pr(S,==, S;<v)
= F(@)Fi)~nF@pantyi n—1,2.) 33 40D Ly p.)
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—nFy(y)psx(x; n—1, p.) é %Qlezi(w; D)

+0*psn(®; n—1, p.)Psa(y; n—1, p.,)

e q",g“i.“ i U)LY p)

where Fl(x)=u>§ Pan(u; m, p.), Fyy)= é Pen(v; M, D.,).

This theorem can be proved by checking that the right hand side
of (2.13) has the same factorial moments as S. See the proof of The-
orem 3.1 of Takeuchi and Takemura [4] for detail.

Remark 2.2. When S has the bivariate binomial distribution, then
by Lemma 2.2 only diagonal terms remain in (2.13) and (2.14). This
is a particular example of canonical representation of bivariate distribu-
tions. A general theory of the canonical representation of bivariate
distributions has been given by Lancaster [2]. In more than 2 dimen-
sions the result is more complicated.

2.3 Convergence to Poisson distribution

Here we consider the situation where n— oo, np,(1, 0)—2,, 72,0,
1)— 2, and the distribution of S, and S, converges to Poisson distribu-
tion. The simplest case is that S, and S, are asymptotically independent.

THEOREM 2.2. S, and S; converge im distribution to imdependent
Poisson variables with parameter 2, and 2,, respectively, if lim n**'p,(k, l)

=2a52; for each (k,1). Converse of this is true if n**'p,k,1) is bounded
in n for each (k,1).

This follows from the fact that the k-th factorial moment of Poisson
distribution with parameter 1 is given by 2*.

COROLLARY 2.1. S, and S, converge in distribution to independent
Poisson variables with parameters i, and 2,, respectively, if lim np,(1, 0)

=15, lim np,(0, 1)=2;, and lim n**'q,(k, 1)=0 for each (k,1) such that k-+

1=2. Converse of this is true if mp,(1,0), np,(0,1) are bounded in n
and n**'q.(k,1) is bounded in n for each (k,1) such that k+1=2.

This convergence can be studied in more detail using asymptotic
Charlier Type B expansion. For simplicity we only consider the term
of order n~'. Let p(x; )=(4*/x!)e™* be the probability function of the
Poisson distribution and let L,(x; 2)=(d*/di*)p(x; 2)/p(x; 2) be the k-th
Charlier polynomial. Let A,=mnp,(1,0) and A,=up,0,1). Taking the
logarithm of (2.9) we obtain
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(2.15) log M(6,, 8;)=mnlog (14 2,0,/n)+n log (1 + 2:0,/n)
+log Q.(0:/(1+ 2,0:/m), 05/(1+ 2,0,/n)) .

Now we assume that log Q,(z,, ;) can be expanded as
(2.16) log Q.(zy, Tz)=%[bzoff+bllflfz+boz‘?§]+0('n_z) ’

where the remainder term is of order n~* uniformly for |7,|<1+e, |75
=<1l+e. Substituting (2.16) into (2.15) we obtain

@.17)  log M6, 02)=x,0,+zzoz+.11;[cmoz+cualog+cozog]+0(n—2) ,

where ¢y, =by— 2%/2, ¢;;=byy, Cy=by—A43/2. From this we can obtain the
following theorem corresponding to Theorem 4.2 of Takeuchi and Take-
mura [4].

THEOREM 2.3. Let A,=np,(1,0) and A,=np,0,1). Assume that
log Q. can be expanded as in (2.16). Then
(2.18) Pr(Si=a, Si=1)=p(; WPW; 1) {1+ [oln(®; 1)

+enly(x; ) Ly(y; As)+CouLa(ys 22)]} +0(n™%),

where ¢y, €1y, Cy are as in (2.17).

Convergence to more general form of bivariate Poisson distribution
is covered by the following theorem. It justifies taking a formal limit
of (2.13) and (2.14) in view of the fact that as n—oo and np—13,
n~Li(x;n, p)—L,(x; 2) (see Appendix of Takeuchi and Takemura [4]
for a proof).

THEOERM 2.4. Suppose that as m— oo, np,(1, 0)—1;, np,0,1)— 2,
and n*t'q(k, l)—q*(k, 1) with zt] q*(k, )}k A¥2)) < co. Then
k,

(2.19) lim Pr (S,=2, S;=7)

=tz 200 (5] LED Lw; 2)Lws ) -

Remark 2.3. Under the assumption of the theorem, the marginal
distributions of S, and S, approach Poisson if and only if ¢*(k, 0)=0,
k=2, and ¢*(0,1)=0, [=2.

An essential step in proving Theorem 2.4 is that the distribution
defined by the right hand side of (2.19) has a moment generating func-
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tion and hence is uniquely determined by its moments. For a precise
statement see Lemma Al of Appendix. Rest of the proof is the same
as that of Theorem 4.3 of Takeuchi and Takemura [4].

2.4 Convergence to normal distribution
Let

(2.20) Z=(Zy Zo) =[(Si—np ) VN, (Sy—np.)/ V] .

We now consider the case where Z converges to a bivariate normal
distribution. Let

C=< Ciy c12>

Ci2  Cp

be a symmetric positive definite matrix and consider a bivariate nor-
mal distribution with mean 0 and covariance matrix C. Let

(2.21) e, (C)= #k,l(cm Cizy Cy3)

denote its mixed (k,!) moment. More precisely g, is the coefficient
of tt;/(k!l!) in the expansion of exp {(c,ti+2¢;tit,+cxt2)/2}. Then g, , is
a polynomial in ¢, ¢;5, ¢, and therefore it can be defined for all values
of ¢, €3, ¢ (not only for positive definite C). Using this notation we
can state the following theorem.

THEOREM 2.5. Let p.=p,(1,0) and p.,=p,0,1) be fixed and let Z
be defined by (2.20). Let ¢y, ¢, and ¢y, be constants such that

3= <011+px-(1—px-) Ciz )
Ci3 et Da(1—p.1)

18 positive semidefinite. If

lim n*+7%q,(k, l)=Fk, (€11, Crzy Ca2)

n—oco

then Z converges to N(0, X) in distribution. Converse of this 18 true if
n*+o2q (k, 1) 18 bounded in m for each (k,1).

Proof of this is the same as that of Theorem 5.1 of Takeuchi and
Takemura [4].

The following special case is worth mentioning because of its sim-
plicity :

COROLLARY 2.2. Let p.=p,(1,0), p,=0,0,1) be fixed and let Z be
defined by (2.20). If

lim n*+92q, (k, [)=0 , for Ek#l,
(2.22) e
lim n*q.(k, k)=chk! ,
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then Z approaches N(0, X) in distribution where

z= <p1.(10;p1-) p.l(lcf-p.l)) ’

Note that (2.22) corresponds to (2.12) for finite n.
Concerning the limiting form of (2.14) we have the following the-
orem.

THEOREM 2.6. Let p,.=p,(1,0), p.,=p,0,1) be fixed. Suppose that
g*(k, )=lim n**2q,(k, )/[p,.(1—p.)]**[P.(1—p.)]"* exists for each (k,1)

with 3 q¥(k, D)}kl <oo. Then
(2.23) lim Pr (S, =np.+xvnp.(1-p.), S;<np.+yvnp.(1—p.))

=0()0w)-0@Ww) 33T by 1) —0W)(a)

L © o %k

- LEDp, @) +see) 5 5 LD b, @h- ),
where ¢=0' is the standard normal density and h, is the k-th Hermite
polynomial.

As in Theorem 2.4 an essential step of the proof is to show that
the right hand side of (2.23) has a moment generating function. For
a precise statement see Lemma A2 of Appendix.

Although the other results of Section 5 of Takeuchi and Takemura
[4] can be generalized to the bivariate case, we omit them here.

3. Sum of multinomial random vectors

In this section we discuss a generalization of the univariate results
to the multinomial case. The difference from Section 2 is that the 0-1
random variables are now mutually exclusive. Again for notational
simplicity we discuss the bivariate case. All results of this section can
be stated for more than 2 dimensions with obvious modifications.

As in Section 2 we keep our notation consistent with the univari-
ate case. Since the generalizations in Section 2 and in this section are
different, this results in the same symbols used differently in Section 2
and in this section.

3.1 Notations and definitions

Consider k+1 exhaustive and mutually exclusive categories Ci,:--,
Ci) Ciri. Let k=2 for notational simplicity. Let U, V be the indicator
functions of C, and C,, respectively. Note that U and V are mutually
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exclusive, i.e. Pr(U=1, V=1)=0. Let X,=(U, V.), i=1,---,n, and let
S=(S;, S)))=> X; be the sum. We do not assume any condition on
dependence among U’s and V’s. Let p,,=p;, ... s, ....;, be defined as in
(2.1). Note that if there is a common element among 4’s and j’s then
D:;;=0 by definition. This implies that if k+!>n, then p,;=0. Now
let

@3.1) Pl D)=—t S S B s

n 4 <<y J1< <y
k,l

where <knl> is the multinomial coefficient :

n\_ 'n!
(3.2) <k,z>_m ’

Note that p,(k,[) is defined differently from Section 2. In particular if
k+1>mn, then p,(k,1)=0. If X.’s are exchangeable, then simply p,(k, [)

=Pr(U,=:--=U,=Viu=-+-=V,,=1). Let pq,, again denote the (%, I)
factorial moment of S. Then in the present case we have
(3.3) La,n=1""p,(k, 1) .

Now let p,=p,(1,0) and p,=»,(0,1). Now we define central multi-
nomial moment q,(k,l) for (k,1) with k+I1<n by

qn(Or 0) = 1 4
(3.4)

k l
alle, =33 33 (<1 %) (L Vpintwi—i 1-n)
=0 h=0
k=1or lx1.
Inverting this relation for p,(k,1) with k+Il<n we have

(3.5) nle, D=3 33 (%)(§ Jptptate—g 1-1) .

The probability generating function of S is defined as (2.6). The fac-
torial moment generating function M6, 6,)=G,(1460,,1+8,) is now
given as

(3.6) M0y 0= 33 BBy = 51 (1))ot0inh,)

l=n

The central multinomial moment generating function is defined as

@.7) Q01 =33 (k l)a*oéqﬂ(k D).
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Substituting (3.5) into (3.6) we easily obtain

— n 6, 0, ] .
B8 M =P OOV Qo T
Note the difference of this expression compared to (2.9).

As in Lemma 2.4, p,(k,l) and q,(k, ) can be interpreted as moments
when S has a certain mixture distribution. The following lemma seems
to be a more natural generalization of Lemma 2.2 of Takeuchi and
Takemura [4] than Lemma 2.4.

LEMMA 8.1. Suppose that S is a mizture of multinomial distribu-
tions with random success probabilities P,, P, where (P, P,, Py)=(P,, P,,
1—P,— P, is distributed over the simplex: P,+ P,+ P;=1. Then for (k,1)
such that k+1=n

vk, )=E(P!P;) ,
0u(k, ))=E{(P,—E(P))"(P,— E(P,))'} .

Proof of this is similar to that of Lemma 2.4 and omitted. We
also note

LEMMA 3.2. q.(k,1)=0 for k>0 or 1>0 if and only if S has a
multinomial distribution.

(3.9)

PrOOF. Clear from (3.8) since for a multinomial distribution the
factorial moment generating function is given by (1+p,0,+,0,)".

3.2 Generalized Krawtchouk polynomials and approximation by multi-
nomial distribution

In the univariate case the distribution of S was expanded around
binomial distribution using the central binomial moment and the
Krawtchouk polynomials. In Section 2 of the present article the ex-
pansion was carried out around the product of binomial distributions
using products of the Krawtchouk polynomials. Here we obtain anal-
ogous results.

In the present case there are some differences. In the univariate
case as well as in Section 2, the polynomials employed were orthogonal
polynomials. In this section we first define generalized Krawtchouk poly-
nomials which are no longer orthogonal polynomials. As a byproduct
we also define another system of polynomials, which are dual to the
generalized Krawtchouk polynomials.

Let the probability function of the multinomial distribution be de-
noted as

(B.10)  Dun(@yy ey T3 My Dy e, D)= (x“ . n xk>pf!- DD,
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where p;,,=1—-p,—..--—p, and x,,,=n—x,—--—x,. For notational
simplicity we again consider the case k=2. Now we define a generalized
Krawtchouk polynomial by

k+1l

(8.11) Liu(x, ¥; oy pz)=—a—;pm(w, Y5 My Duy Do) Dun(Zs Y3 My Dy D)

0prop;

It can be easily seen that L}, is a polynomial in (z,y) of degree k+I
and L%,,=0 if k+I>n.
For a multinomial distribution .k, [)=2%p.. Hence by (3.3)

(3.12) E(S{PS)= pox,n=n"*"pi 1}

Differentiating this relation ; times with respect to p, and k times with
respect to p, we obtain

LEMMA 3.3.
(3.13) . +Eys ) T®YPLE (%, Y5 Di» Po)Pun(®, Y3 Ny Dyy D)

n(k+l)k(!)l(h)pllc—jp;—h , ,l:f jék and hél ,
0, otherwise .

This relation can also be used to show
LEMMA 3.4.

(3.14) 10(%5 Y5 Dy D)Pun(Z, Y5 1, Dy, D)

=(—4)Y(—4,)'n* P pun(®, y; n—J—h, D1, D3)
where 4.f(z, y)=rf(x, y)—f(x—1,y) and 4,f(x, y)=Ff(®, y)—f (2, y—1).

ProoF. It suffices to show that for all k and [
2 2 PY (=4 (— 4,y P pyn(, y; m—3G—h, D1y D2)

=33 a®Y L)%, Y D1y P)Pun(®, Y5 Ny Py D) -

Summing by parts, the left hand side is equal to
nI 33 AYx+5) P LY+ R)Pun(@, Y ; —3—h, Dy, D2)

But 4i(xz47)®=kPx* P, Ay+h)P=I"y*», Therefore this is equal
to
RPRDLD 5 g Dy Ppy (i, Y3 n—G—h, Dy, )
= n(/+h)k(!)l(h)(n_j_h)(k—j-l-l—h)pf—jp;“h (by 3.12)
=n(k+l)k(!)l(h)p’f—jp;—h .

This proves the lemma.
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Now we are ready to prove the following theorem.
THEOREM 3.1.
(8.15) Pr(Si=2, S;=¥)=Dux(%, ¥; 1, Dy, D1)

X {1"‘ Z‘J _qy(_k’Q_Lz'l(x’ y; pu pz)} .
ssi+risn Kl

(3.16) Pr(S;=x, S;:=v)

z v
= Dun(U, ;5 7, D1y Do)

=0
L PIPX 2.(0,) L33t (u, ¥5 Do Po)Pun(®, ¥ m—1, Dy, Dy)

2u=0 [l

n v
e PIPX 2.(k, 0) Lzt o, v; D1y D2)Dun(®, v; —1, Dy, D3)

k=2v=0 !

+'n(n—1) E ML::{,l—l(x, Y; D pz)

1A
oy R

- Pun(®, Y3 n—2, Dy, D) .

PROOF. (3.16) is a straightforward consequence of (3.15) in view
of (3.14). To prove (3.15) it suffices to show that the right hand side
of (3.15) has the same factorial moments as S since the factorial mo-
ments uniquely determine the distribution. Now by Lemma 3.3

TS Oy PP, Y 1 py pr) B 1

T,y f+hsn JA! :h(m! Y; Dy pz)

—_ é é n(k+l)ﬁ _@_(f_)_pk—jpl—hq (j h)
o e j! h! 1 2 n\J?
=n**Vp,(k, l)=#<k,z) .
This proves the theorem.

In the univariate case the Krawtchouk polynomials form a system
of orthogonal polynomials. Hence by Perseval’s identity we had

— pk l_p ¢ n
a)=28 =2 By .

See formula (8.8) of Takeuchi and Takemura [4]. In the present case
{Lz,} do not form a system of orthogonal polynomials. However from
Theorem 3.1 we can obtain the following analogous result. Define

% . & & (kN 1 i
@1 L@ vime)=3 3 j)<h )—mpermy (— D pl g,

then from (3.3) we easily obtain



320 KEI TAKEUCHI AND AKIMICHI TAKEMURA

(3.18) E(L2 (Su So5 D 1)) =00k, 1) .

Now write out the left hand side expectation term by term using The-
orem 3.1 and equate each term. Then we have

ProPOSITION 3.1.
(3.19) = Lz (@, y; Dy PL3A, Y Dis P)Pun(@, Y5 0, Dy, D)
kW, if k=3 and l=h,
0, otherwise .

We see that {L7,} and {E:,,} form dual systems of polynomials with
respect to the multinomial distribution. As seen above, these polyno-
mials are almost as convenient as orthogonal polynomials.

Finally we derive generating function G,(f;,¢,) of generalized
Krawtchouk polynomials useful for later developments. By definition

pﬂN(w: Yy, n, pl+tu p2+t2)

k41
=Dun(®, ¥; 1, Dy, pz){1+ > ﬁLz‘,z(w,y;px, pz)} .
x+izsa k!l

Hence

(3.20) Gn(tl’ to)=pux(, ¥; n, D+, pz-l-tz)/pHN(x, Y N, Dy, Ds)
=[1+2/p L +&/p]"[1— (i + ) /A— P — )7

3.3 Conwvergence to Poisson distribution

As far as convergence to Poisson distribution is concerned there is
not much to discuss here. Actually, Theorem 2.2, Corollary 2.1 and
Theorem 2.4 hold word by word in the present setting. Concerning
Theorem 2.2 and Corollary 2.1 this is clear because in (2.3) and (3.3)
we have n®n®[n**t—1, n**0/p*+*'—1, respectively, as n—oo. Concern-
ing Theorem 2.4 we only have to check that as n— o0, n~**VL7 (2, y;
Dy, Do) — Li(; 2,)L(y; ;). We state this as a lemma.

LEMMA 3.5. As n— oo, np,— 1, and np,— 1,
(3.21) n~*OLE (%, Y5 Py P2)— L ; 2)Ly(y5 22)
where L,(x; 2,) and L,(y; 4;) are the Charlier polynomaials.

Proor. From (3.20) the generating function of n*'L;, is given
by

Gty t)=[1+t/mp L+ t/npl[1— (i +t)n(l—p— D) .

As n— oo, np,—A;, and np,— 2,, G,,(t,, t;) converges to
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G(th t)=[14,/2]"[1 48,/ 2,]" exp (—t,—1y) .

This is the generating function of L,(x; 2,)L,(y; ). Since G, and G
are analytic (around the origin), the lemma follows.

Now consider Theorem 2.3. In the present situation a difference
appears in the term of order n~'. Let p,=4,/n, p,=2/n, and take the
logarithm of (3.8). Then

(3.22) log M,(6y, 0;)=nlog (14 2,0,/n+ 2,0,/n)

0 0
+lo ,,[ ! , ! ]
R Sy R s Wy

Now assume that log Q,(z;, ;) can be expanded as in (2.16). Substitute
(2.16) into (3.22). Then log M,(4,, 6,) is expressed as in (2.17) with ¢,
now defined as ¢;=b,—2;,4,. Therefore

THEOREM 3.2. Let 2,=np, and A,=np, Assume that log Q, can be
expanded as in (2.16). Then

(8.23) Pr(S,=2, S;=1)=p(x; A)p(y; zz>{1+%[cmLz(x; )

+ouLu(@; B A +ulalws 2]} +0(n ,
where cy=by— 22, cy=by— A4y Cou=Dbp— A32.

3.4 Convergence to normal distribution

Convergence to normal distribution can be stated in a similar way
as Theorem 2.5. The difference in the present case is that the asymp-
totic covariance matrix is based on the multinomial distribution.

THEOREM 3.3. Let p,=p,(1,0) and p,=p,(0, 1) be fixed and let Z be
defined by (2.20). Let ¢y, ¢z and ¢y, be constants such that

;;=(cu+px(1—p1) Co— PP )
Co—DD:  Cut+p(l—p)

18 positive semidefinite. If
1'131” n*+0q,(k, U)= pre,i(C11y Czy Ca2)

then Z converges to N(0, X) in distribution. Converse of this i3 true
if n*tlq (k, 1) s bounded in n for each (k,l).

A substantial modification is needed to adapt Theorem 2.6 to the
present case. First we need bivariate Hermite polynomials. Let ¢(z,
¥; p) denote the density function of standard bivariate normal distri-
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bution with correlation coefficient p. Define Hermite polynomial of

degree (k,l) by

ak-l-l

(3.24) % CATH P)= a9 U5 D)W, ¥ p) -
x*oy

Then we have the following lemma.
LEMMA 3.6. Let p;, p; be fixed. As n—oo
(3.25)  [p(1—p))** 01 —py)]*m oA

« Ly (np,+2v/np(I—py), np+yvVnp(1—15); D1, 13)
""hk,t(xr Y 0),

where

Proof of this is given in Appendix. (3.25) allows us to write down
the formal limit of (3.16). This results in Bivariate Edgeworth expan-
sion (see Chapter 3 of Mardia [3] for example). However since the bi-
variate Hermite polynomials are not orthogonal to each other the re-
gularity condition for convergence is more cumbersome. Define

(3.27) k!N k’!l’!ak,l;w,u=s he, (@, Y5 o), (2, Y5 p)I(2, ¥ ; pYdady .

A more concrete expression of a, ., is discussed in Appendix. Now
we can state the following theorem.

THEOREM 3.4. Let p,=p.(1,0), p,=p,(0,1) be fized. Suppose that
g*(k, )=1im n*+q,(k, )/[p,(1 — p)]*"*[0(1 —D,)]* exists for each (k,1) such

that

(3.28) 23, 10%06 Da* K, V)t <oo .

Then

(8:29) lim Pr (S, np,+avap(1—py), S,<np,+yvapl—py))

e e
=0, 95 p)— 2 S_w LOD by, 33 P, 33 P

Ul
haid k
._.Z Sy q_(lc—&hk—l,o(x, tv; p)¢(x, ,v; p)d'v
k=2 J-o k!
*
+3 5 q Igcl»'l) Psit(@, Y3 0)H(, ¥ 0)

where
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o==| (1—:5?12—1»2) I

Note that the regularity condition guarantees that the density of
the distribution on the right hand side converges in L!. Using Lemma
A2, Theorem 3.4 can be proved as Theorem 2.4 or Theorem 2.6.
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Appendix

The following lemma is needed for proving Theorem 2.4.

LEMMA Al. Let P* be a distribution over pairs of monnegative in-
tegers such that >) P*(x, y)/[p(x; 2)p(x; ;)]=M<co. Then P* has a
z, ¥

moment gemerating function.
Proor. By Schwarz, for any a>0, >0

3 a*bPX(x, Y) <[ a*b2a52y/ (! y!) X PX(, y) ! y! /(2545

__:e[(42_1)1l+(52-1)12]/2M1/2< o .
The following lemma is needed for proving Theorems 2.6 and 3.4.

LEMMA A2. Let f(z,y) be a density function such that Sf(x, )Y

é(x, y; p)dedy < oo, where ¢(x, y; p) i8 the density function of the stand-
ard bivariate mormal distribution with correlation coefficient p. Then
f has a moment gemerating function.

Proof is similar to the proof of Lemma Al and omitted.

ProOF OF LEMMA 3.6. The generating function of L} ,(x, ¥; p;, 1)
is given by (3.20). Similarly the generating function of the bivariate
Hermite polynomials is given by
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(A1) Hx+t, y+ty; p)/d(, ¥ p)
— _ ti—2wt, + 13— 2yt | p(tit,—at,—yt,)
mexp |- A=ZREESIG | UBCEI) |

Now transforming (3.20) to the generating function of [p,(1—p,)]**-
[2(1—p)]"*n~*®2L7 . and letting m— oo we easily see that the limit
coincides with (Al). Therefore by analyticity of generating functions
Lemma 3.6 follows.

We finally discuss how (8.27) can be calculated. Let

-1 2)"

Then (Al) can be written as
06, t)=exp |~ (b, )37t 6+t )37, Y |
Therefore

Ez' ty t;sf’sé'ak,l;k’,l’:‘-s g(ty, )9(sy, s2)é(2, y; p)dady

kLK,
=exp [(ty, £:)27'(s1, 8,)]
=23 ——1—2— [t:81+t:8,— p(tis,+E28)]"
» nl(l—p’)
From this a, .., can be easily obtained. In particular a, . =0 if k+
LK+,



