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Summary

Normalizing and variance stabilizing transformations of a sample
correlation, multiple correlation and canonical correlation coefficients are
obtained under an elliptical population. It is shown that the Fisher’s
z-transformation is efficient for these statistics. A normalizing trans-
formation is also studied for a latent root of a sample covariance matrix
in an elliptical sample.

1. Introduction

Let T, be a statistic whose distribution depends on the parameters
n and @=(6,,---, 0,)'. Assume that there exist p(d) and o(6) such that
v {T,—p(6)}/a() has a limiting normal distribution with mean 0 and
variance 1 as n tends to infinity, and that the rate of convergence to
normality is

P [V A Ta— p(0)Yo(0) < x]=P(2) +O(n ™),

where @(x) is the standard normal distribution function. If there exists
a strictly monotone function f such that

P W7 {f(Tw)— f((6))—c/n}{a(0) S (n(0))} =] =P(x)+O(n7) ,

where ¢ is an asymptotic bias of the transformed variate f(T,), then
Konishi [8] called f(T,) as normalized transformation of 7,,. It is known
that a variance stabilizing transformation is obtained by solving the
differential equation o(6)f'(z(8))=1 for a continuous differentiable func-
tion f in a neighborhood of T',=u(6).

Konishi [7]-[9] studied these properties of the sample correlation,
multiple correlation and canonical correlation coefficients for the normal
population, and showed that the Fisher’s z-transformation played the
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fundamental role when the tail part of distribution was considered.
Konishi [10] also discussed a similar problem for intraclass correlation
coefficient.

The limiting distribution of sample correlation coefficient under the
elliptical population was studied by Devlin, Gnanadesikan and Kettenring
[2] and Muirhead [12]. Muirhead and Waternaux [13] studied the limiting
distributions of the multiple correlation and the canonical correlation
coefficients. This paper shows that the Fisher’s z-transformation has
the similar properties for an elliptical population as well as the normal
population.

2. Normalization and variance stabilization

Let x be a p-dimensional random vector with an elliptical density
function of the form c,|V|g((x—p)'V~(x—p)) where c, is a positive
constant, V is a positive definite symmetric matrix and g is a non-
negative function. Then the characteristic function of x has the form
exp (it'p)¢p(t'Vt) for some function ¢p. The exact form of ¢(#'VE) may
be found in Hayakawa and Puri [6]. The expectation and the covari-
ance matrix of x are g and ¥=—2¢'(0)V=aV, respectively. Without
loss of generality it is assumed that x is centered at the origin.

2.1 Correlation coefficient

Let r be a correlation coefficient based on a sample of size n from
the elliptical population.

Let f(r) be a one-to-one and twice continuously differentiable func-
tion in the neighborhood of the population correlation coefficient p.

With the help of Theorem 2 of Bhattacharya and Ghosh [1], Fang
and Krishnaiah [4] gave the asymptotic expansion of the probability
density function of f(r) for non-normal population. The asymptotic
expansion of the distribution of the standardized quantity of f(r) for
an elliptical population is given by

(1) P YT {f(r)— £ (o) — e}/ (L+ k21— g2) f () S2]
— (4o r 1 ¢
o)+ 07 2t AT =)

1o L (1—p)Ll0).
o5 (=) L0 Lota)+ot1m)

where ¢(x) is the standard normal density function and

k=[¢"(0)—{¢'(OF1/{g'(0)}F .
It should be noted that x only depends on the functional form of the
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characteristic function ¢, not depends on the population parameter.
The 3x is known as the kurtosis of the variable. Following a general
procedure given by Konishi [8], we first search for a function which
makes the coefficient of «® vanish, that is,

1 ] 2 f”(p) —
—_—— p— ____—.__0 .

A particular solution of this differential equation is given by
(2) fe=Liogite
2 1—p

This is the Fisher’s z-transformation ([3]) of . By choosing ¢=p(1+«)/2,
we have

- T
=0(z)+0(1/n) .

This shows that the Fisher’s z-transformation has a similar property
for the elliptical population as well as the normal population.
The variance stabilizing transformation is obtained by solving

(1+6)*1—0")f"(0)=1

and is given as

__ 1 1 1+4p
(4) f(P)—W—z—hg—l—;—p--

This implies that the Fisher’s z-transformation (4) of 7 is also a vari-
ance stabilizing transformation for the elliptical population.

2.2 Canontcal correlation coefficient

Let x=(xy,---,%,) and y=(y, -+, ¥,), p<q have a covariance
structure
I, P 0 » 3
s—| P Ip 0 =|: 1 12]"
2y Ezz q

0 0 I, ‘7%

where P=diag (o, p3,: -+, pp)y 1>0>p,>+++>p,>0 are the population
canonical correlation coefficient. Let S be a sample variance-covariance
matrix based on n observations from a (p+q)-variate elliptical distribu-
tion. Lawley [11] gave the asymptotic expansion of the sample canon-
ical correlation coefficient r,, 1=1,2,-.-, p as
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;4
ri=ay+ 2 — - 10,(1/n)
I#t pi—pj

where A=(a,;)=S8:'S;Sz'Sy and S;;’s are partitioned matrices of S cor-
responding to 3, respectively. Then the asymptotic expansion of the
distribution function of a standardized quantity is given by

(5) Py {f(r)—F(oD)—c/n} 201 — D) f (o) A+ x) = m]

=0(x)— (;:j)%/ [p+q 2+ 01+2(1— 03)2

_ 4
(=P f"(e})(1+)

+ 1=t 20 —) LEE ot s o1y

The transformation which makes the coefficient of 2* vanish is

‘—Pj

f(p%)=—log 1"’"‘ .

—Pi

Thus by choosing

[p+q—2+p%+2(1—p%)2 £ 2],
I#t pi— Pj
we have

(1. 14r 1, 14p
6 P[( n > {_1 i L jog 1te:
(6) 1+s/ (2781, "2 %12,

2
—E0) [y g2+ ptv20—p) 3 =2 || o]
2np, i#t pi—pj

=0(x)+0(1/n) .

The variance stabilizing transformation is also obtained as

2\ 1 1 1+pi
1= i 3 o e

Let R be the sample multiple correlation coefficient between x and y=
(%1,-++,y,) based on n sample from a (¢+1) dimensional elliptical dis-
tribution with a population multiple correlation coefficient pz. As the
special case of the canonical correlation coefficient we have

(1) P(2)" (108 THE—F 0 12200 (14 <o
=0(x)+0(1/n) .




NORMALIZING AND VARIANCE STABILIZING TRANSFORMATIONS 303

2.3 Latent root of the sample covariance matrix

Let [,>l,>--->1, be the latent roots of a sample covariance matrix
S based on n observation from a p-variate elliptical population and let
A>2;,> -+ >12,>0 be the latent roots of the population covariance ma-
trix 3.

Fujikoshi [5] and Waternaux [15] studied the asymptotic expansion
of the probability density function of latent root for non-normal popu-
lation. By the similar argument discussed in subsection 2.1, the asymp-
totic expansion of the distribution of f(l;) is given as follows.

(8) PlV/n{f)—rfa)—c/n}/af ’(21)(617—1)"2300]

— () — 1 A
=00~ = [21’,2# 1, 6(6b gy (~90a—180+2)

c

f '(21) { 6(6b—1)

L))
+8= f,(xt)}x]qs(moa/r),

(—90a—18b+2)

where

a____i ¢"’(O) b= 29[’”(0) , a=_2¢r(0) .

3 o o
The transformation which makes the coefficient of x? vanish is given by
2d, d+0,
(9) f()= gz, d=0,

where

d= 90a+1085*—18b+1

3(6b—1)
The correction term ¢ is chosen as
45a+9b—1 :|
zd[zb ,

The variance stabilization transformation is given by

_ 1
(10) f(zi)—w log 2, .

For the normal population we have d=1/3 and c=21’3[jZ‘,i A,/(A,—2,)—2/3],
+
which agrees with the result by Konishi [8].
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3. Numerical comparison

In this section we give some results of simulation. Let (X, X;) be
a bivariate standardized normal random vector with mean zero, vari-
ance one and correlation coefficient p, and S a chi-squared random vari-
able with » degrees of freedom which is independent with (X, X;).
Then a bivariate ¢t random variable is defined as (X,(S/v)~"%, Xy(S/v)™'?).
We calculate a sample correlation coefficient  based on =100 observa-
tions from the bivariate ¢ distribution with v=10. 10° sample correlation
coefficients are generated and 95 percentile points R of » are obtained
for p=0.1(0.2)0.9. NR stands for n"(R—p)[{(1—p")(1+«)"*} and FR
n (1 1+R 1 1+4p 1 p _
stands for (1+K> 1-2— log—l_R——z-log——l_p _E_q;(1+x)} where k=
2/(v—4). Comparing the transformed values with the 95 percentile
points 1.644 of the standardized normal distribution, FR shows remark-
able agreement.

Table 1. The 95 percentile points of sample
correlation coefficient under the bivariate
t-population.

P) R NR FR
0.1 0.2838 1.607 1.652
0.3 0.4629 1.550 1.641
0.5 0.6304 1.505 1.640
0.7 0.7863 1.465 1.642
0.9 0.9313 1.426 1.644

Next we consider the case of a bivariate contaminated normal dis-
tribution

(A—e)p(x]|d)+eo7¢(x[c| ) ,

where ¢(x|d) is the standardized normal probability density function
with zero means, one variances and covariance p. Srivastava and Awan
[14] studied the exact probability density function of a sample corre-
lation coefficient for a bivariate contaminated normal population with
same covariance matrices. The 95 percentile points of 10° repetitions
of r based on 100 samples are given in Table 2. It shows that the
Fisher’s z-transformation gives good enough approximation for small e.
However, the approximation becomes inaccurate as e increases.
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Table 2. The 95 percentile points of the sample corre-
lation coefficient under the bivariate contaminated
normal population with ¢=0.1.

P P Ry NR FR
0.1 0.1 0.2689 1.620 1.660
0.5 0.3250 1.623 1.684
0.9 0.5578 1.593 1.809
0.3 0.1 0.4517 1.583 1.668
0.5 0.5001 1.569 1.692
0.9 0.6890 1.472 1.808
0.5 0.1 0.6224 1.549 1.679
0.5 0.6589 1.512 1.689
0.9 0.8002 1.379 1.821
0.7 0.1 0.7807 1.502 1.673
0.5 0.8037 1.451 1.676
0.9 0.889 1.280 1.802
0.9 0.1 0.9292 1.459 1.667
0.5 0.9376 1.412 1.690
0.9 0.9663 1.202 1.806
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