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Summary

This paper concerns interval estimation of the critical value § which
satisfies p(f)= sup p(x) under the general linear model Y,=p(x)+e;
zxeX

(=1, 2,--.), where y(x):é} B,f,(x) for z € XX and the functional forms

of f,’s are known. From an asymptotic expansion it is shown that,
under reasonable conditions, the limiting distribution of v7n (§,—0) is
normal. Thus in the large-sample case a confidence interval for 6 can
be obtained. Such a result is useful when one is interested in carry-
ing out a retrospective analysis rather than designing the experiment
(as in the Kiefer-Wolfowitz procedure). In Section 3 a sequential pro-
cedure is considered for confidence intervals with fixed width 2d. It
is shown that, for a given stopping variable N, vN(6y—06) is also
asymptotically normal as d—0. Thus the coverage probability con-
verges to 1—a (preassigned) as d—0. An example of application in
estimating the phase parameter in circadian rhythms is given for the
purpose of illustration.

1. Introduction and assumptions
Consider a general linear model
1.1) Y,=p)+e, 1=1,2,---

where p(x) is a real-valued function of z, {z,} a sequence of real num-
bers, and {¢;} a sequence of i.i.d. random variables with means zero
and a common unknown variance ¢*<oco. Let 6 denote the value of z
at which p(x) reaches its supremum. This paper concerns interval esti-
mation of ¢ when the parametric form of p(x) is known.
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One of the most well-known methods for estimating 6 is, of course,
the Kiefer-Wolfowitz procedure (Kiefer and Wolfowitz [10]). Under
that procedure the functional form of p(x) is assumed to be unknown,
and the procedure involves an algorithm for the stochastic approxima-
tion of 4. Thus it may be viewed as a “nonparametric” solution to
the problem. In certain statistical applications, however, the mean
function u(x) can be assumed to possess a given parametric form with
unknown parameters, such as the polynomial model or the trigonomet-
ric model (see e.g., Graybill [7], Sections 8.7 and 8.8). In those cases
6 depends on p(x) only through the regression parameters g,’s. Thus
it can be estimated by estimating the B,’s. Such an approach is of
great importance for problems in which one is carrying out a retrospec-
tive analysis when the data are already collected.

For the general case we assume that p(x) in (1.1) is of the form

(1.2) w@)=33 B, 4@ .

where p=1 is fixed, the functional forms of f,(x) (j=1,2,---,p) are
predetermined, and the g,’s are unknown parameters. (In applications
the number of terms in x(x) (the value of p) may be determined by
the usual selection of variables method in regression analysis.) Let 2
denote the interval of interest where ¥ =[a, b] for some finite a, b or
X =(—o0, ), and let us define

(1.3) p(0)= sup p(z),
reX
which is a function (although not necessarily explicitly) of

(1.4) B=(Bu-++) By)" -

For each fixed n and a sequence of predetermined real numbers {z,},
2, € X, let us rewrite (1.1) in the form

Yn=(Y1’ M) Yn)T=Anﬂ+3n

where, for a,,=f,(x.), A,=(a;;) and e,=(&y,+- -, &,)7. Let S, be the (pXp)
matrix A7A,. It is assumed that

ConDITION B1. {e;]} is a sequence of i.i.d. random variables with
means zero and unknown finite variance o

CoNDITION B2. (i) f,(x) is bounded for z € X for all 7, (ii) S, is
of full rank for all n and (iii) there exists a positive definite matrix
2 such that S,/n—2X as n—oo.

CONDITION B3. (i) # is an interior point of X, (ii) p®(x) (the
third derivative of p(x)) exists in a small neighborhood (8—ey, 0+ ¢))
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and (iii) for every given e¢<e, there exists an >0 such that |[x—0|=¢
implies p(x)< p(6)—a.

Note that Conditions B1 and B2 are similar to those in Gleser [6],
Perng and Tong [12], [13] and Srivastava [14]. Also note that if u(x)
is a continuous function of z for x € 2, then Condition B3 (iii) is equiv-
alent to saying that ¢ is unique.

2. Some large sample properties

For each = let ,é,.=S;‘A,T Y, be the least squares estimator of B,
and

2.1) ti=—1- 5 [Y- 5 bwifsw)|

n—p i=t

the usual estimator of ¢%. Then 6,, the estimator of 6, depends on ﬁ,.
through the sample regression function

2.2) @) =33 Bm)f =) »
and it satisfies
(2.3) 2a(0,)= sup. £

Before proving a theorem concerning the asymptotic behavior of 4, we
first observe that

LemMMA 1. If Conditions Bl and B2 are satisfied them, as n— oo,
(a) ¥Vn (,é,,—— B) converges to a multivariate mormal distribution with
mean 0 and covariance matriz o*X~', (b) ,é,‘—nB a.s. and (c) s2—d* a.s.

ProoF. Condition B2 (i) implies that (1/+/'n) max f(x)—0 as n—

oo, thus the lemma follows from Gleser [6] or Srivastava [14].

THEOREM 1. If Conditions Bl, B2 and B3 are satisfied then, as

n—oo, (a) 8,0 a.s., (b) v (@.—6)-L-7(0, ), the normal distribution
with mean 0 and variance

(2.4) et=1Y(a?, 0)=0"(v(0))" T v(6)/("(9))’
where v(x)=(f/(x),+ -+, f1(x))".
ProoF. (a) Denote c¢= suxs)c ji‘, | f,(x)| which is finite and, for arbi-
X € =1

trary but fixed ¢ in (0, &), let 8 be such that
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lz—0|=¢ implies p(x)< p(6)—3 .

By Lemma 1 for every o in the sample space (except on a set of prob-
ability measure zero) there exists an N,(») such that n>N,(»w) implies
m?.x|ﬁ,(n)-—/9,|§a/2c, which implies

1sJsp

| a(®) — p()| < 8/2 uniformly in ze X.
Now from /,(0)< fi.(f,) one has

0= 11(6)— (0. =[1(0)— f1a( )]+ [2n(0) — @]+ [0 — 0]
<[#(6) — (O + [f1a(0.) — 1(B.)] -
Therefore for n>N,(w) one has 0<pu(6)—pu(d,)<3, which implies (by
Condition B3) |4,—6|<e.
(b) For arbitrary but fixed ¢’>0 (by (a)) there exists an N(¢') such
that #>Ny(¢') implies P[|#,—0|<e]=1—¢'. Now consider the Taylor
series expansion of g;(x) about 6 for « € (0—e¢,, 0+¢y):

(2.5) ()= ftn(0) + 1 (6) (x—ﬁ)+%ﬂﬁf’(x’) (x—0),

where g, 7 and AP are the first three derivatives of g, and |2'—0|<
|z—@|. From (2.5) and the fact that

al)=0,  AN0.)<0,

one can write, when 8, is in this small neighborhood,

(2.6) V@ 0)=—v1 i (0)i(0)+ v n R, ,
where

@7 Ru=i(0)- ZoJ{2/(6) - (A1(0) + Z:)}
and

z,.=-;-ﬁsf>(w')(é,.—0) :

It is easy to see that Z,——0 and vnR,—0 as n—oo. On the other
hand, applying Lemma 1 and a well-known convergence theorem (see
e.g., Anderson [2], p. 76) it can be shown that the limiting distribu-
tion of

— VOO =7 5 B0 hmsro)]

is 5(0, r?). Thus there exists an Ny(¢')=Ny(¢’) such that n>Ny(¢') im-
plies
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|P[vVn(@.—0)<2]—P[x(0, )< 2|
<IP[VR (@, —0)<3,16,—0|<e]—P[7(0, )< 2]|+¢'
SIP[—Vn ai(0)/A(0) S 4, 10,—01< ] —P[2(0, )< 2]|+2¢’
<3¢'.

Remark. The result given in Theorem 1 may be used to obtain a
confidence interval for 6; namely, let z,, denote the (1—a/2)-th per-
centile of the 7(0, 1) distribution, then for large n the probability con-
tent of the interval

(2.8) L=0,— 24260y 0 )|V, 0,42, 254, 0.) V)

is approximately (1—a). Such an approach is particularly important
for those problems in which one is carrying out a retrospective anal-
ysis—rather than designing an experiment. It is in this sense that
our approach is different from the Kiefer-Wolfowitz method.

3. Fixed-width sequential confidence intervals

In certain applications a fixed-width confidence interval for the
critical value ¢, with confidence probability approximately (1—a) (pre-
assigned), may be desired. Since ¢* is unknown, clearly there does not
exist a solution under single-stage procedures. However, a sequential
procedure may be developed under the framework of sequential esti-
mation theory. For preassigned d>0 and a€(0,1) let z2=2,,. Let {z}
be a given sequence of real numbers such that Condition B2 is satisfied.
To find a sequential confidence interval for # one may proceed according
to the following

PROCEDURE. (a) Observe the sequence of random variables Y, Y,
..., one at a time.
(b) After observing Y;, Y;,---,Y,, n=p+1, compute ﬁ,,, al, 0, and

Fv@)TE 0. (@)} if 470,) exists,
(3.1) -

o0 otherwise .
Stop with N=n where
3.2) n=the smallest integer such that n=2'%}/d*.
(¢) When sampling stops, construct the confidence interval

8.3) Li=0@y—d, by+d) .

Note that in some applications (such as the collection and analysis
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of certain time series data) the values of x;, are predetermined, thus
in the above-stated procedure {x;} is considered fixed. In some other
cases if one has the freedom of choosing the z,’s sequentially, then it
seems reasonable to do so in such a way that the asymptotic variance
7? is minimized. This is a different problem, and will not be studied
here.

In the following theorem we show that, under this sequential pro-
cedure, the asymptotic efficiency is one and the probability of coverage
converges to 1—a as d—0.

THEOREM 2. If Conditions Bl, B2 and B3 hold, then

(3.4) 1;1101 N/(zz/d)’=1 a.s., 1;_13 EN/(zz/d)*=1,
and

(8.5) lim PIWN(@y—0)<1—-P[5(0, )=<1]  for all 2.
Consequently,

(3.6) lim Pl e Iy]=1—a .

d—0

PrOOF. (3.4) follows immediately from Theorem 1, Lemma 1 of
Chow and Robbins [5] and a minor modification of Theorem 4.1 of
Gleser [6]. To prove (3.5), first note that ¥ N Ry (where Ry is as in
(2.7 when = is replaced by N) converges to 0 in probability as d—0.
Hence by (2.6) and Slutsky Theorem the limiting distribution of +N-
(@x—0) is identical to that of —+/N 4(0)/44(6). Let us denote

BN 9B=—HOIFHO=—3 B0 B0,

and show that the limiting distribution of VN (g(ﬁN)) is 5(0, %) as d—0.
For arbitrary but fixed small ¢>0 and 3>0 let us define

A= N IBM—BI<e],

Ay = [1"(0)— eSO "(0)+6<0] ,

then there exists an v; such that n>y, implies P(4,,)=1—43/3 for k=
1,2. On the other hand, by the proof of Theorem 2.2 of Albert [1]
there exists a large v, and a small ¢ such that the probability content
of the event

» (+on

A= A 0 1Bm—bim)Isesvm)]

J=1 m=Q-c)n

is at least 1—4/3 whenever (1—c)n>y; holds. Now if a point o is in
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the set ra] A,., then for all m satisfying max (v;, v;) <A —c)n=<m=(1+
k=1

c)n one must have
|9(B)— 9B IS [12/(8)+ €172 10 f(6) — fin( ) (6))
L@+l | 5 B mF1@)| - {3 18m)—B,(m) £7(0)]
+| 218,510 {2 18/m)—Bm) £10)

+ {18 -\ 50} {2 18,m—B 10} ]
=[p(0)+ e]_z[(s"'/ﬁ) (2bobsbs + bxbzsflm)] = e'r/m ’

where
yd b4
by=max|B;[+e, b=2[f/0), b= [r7(0)l
1Sisp Jj=1 j=1

are finite real numbers. Thus for every fixed ¢’>0 and 4>0, there
exists a large v and a small ¢ such that

P[0 (gBem)—gBmlses/vn}|z1-0

whenever v<(1—c¢)n holds; that is, the C2 condition in Anscombe [4] is
satisfied. This together with Theorem 1, (3.4) and the main theorem
of Anscombe [4] implies (3.5). (3.6) is then an immediate consequence
of (3.4) and (3.5).

4. An example of application

In this section we, for the purpose of illustration, provide an ex-
ample of application in studying circadian rhythms.

It is well-known that in many biomedical experiments the measure-
ments of a physiological variable taken at different time points show a
certain periodic (or rhythmic) pattern, such a pattern is usually called
a biorhythm. The study of biorhythms has a fundamental importance
in biomedical research, some convenient references in this area are
Halberg [8], Halberg, Tong and Johnson [9] and the monograph by the
National Institute of Mental Health [11]. A special case of biorhythms
is the circadian rhythms in which one concerns the periodic behavior
of a physiological variable (such as the oral temperature) as a function
of 24-hour local time. Let x denote the local time with 2z being equiv-
alent to 24 hours, and let Y(x) denote the measurement of such a vari-
able at a given time z. Then it is known (e.g., Halberg, Tong and
Johnson [9] and Tong [15]) that in most cases one can assume the model
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4.1) Y(x)=8,+Acos(x—0)+e¢, z €[0, 2],

where B,, A>0 (the amplitude), § (the phase) are unknown parameters
and ¢ is a random variable with mean zero and finite unknown vari-
ance ¢’. Defining

4.2) B:=Acos @, Bi=Asin 6

and writing

(4.3) p(x)=pB+Acos(x—0)=p+p:cosx+psine, x € [0, 2] ,
one then has the model

4.4) Yi=p@)+e,, 1=1,2,---

as given in (1.1) when observations on Y are taken at time points «,,
Lgyr ooy Lpyo oo

It is known (e.g., Halberg [8]) that in certain cases the effective-
ness of treating a patient in a clinic can be significantly improved when
the timing of the treatment is made to best fit the patient’s rhythm.
For this purpose the estimation of the patient’s phase parameter ¢
(=tan™!(B,/B:)), which is the critical value in the linear model (4.4), is
of special interest. The estimation of § can be made based on (z, Y)),
(%3, Y3),+ ++, (X4, Yn),- -+ where {z,} is a sequence of predetermined real
numbers. For example, if the oral temperature of a patient is to be
observed at 4:00 a.m., 8:00 a.m., noon, 4:00 p.m., 8:00 p.m. and
midnight for several 24-hour periods, then one has

Ty=Lp=- - =_2é_€.' Ly=Xg= "+ =_46£’ e, Bg=Lyg= =21 .

In this application, it is clear that (i) fi(x)=1, fix)=cosx and
fi(x)=sin x are bounded for all z € [0, 2z], (ii) 6 is unique and (iii) x®(x)
exists in a small neighborhood of 4. Thus Conditions Bl and B3 are
satisfied. Furthermore, there exist many designs for which Condition
B2 is also satisfied. For example, if one chooses an equally-spaced de-
gsign with @,=x..,= .- =2r/k, 2;=2, ;= =4xlk, -+, X, =%y, =+ =2n
for any k=3, then it follows from Anderson ([3], p. 95) that

koo 29n X 2ir _E . 2jn 2jm
>1 sin =>1c0o8s 2" = E: —_— ___.=O’
j=t k= k= Sin k 608 k

Thus S, in Condition B2 is of full rank for all » and S,/n—X¥=(3,,) as
nm— o0, where
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_ S | _ ..
du=1, 022—633——2- and 9,=0 for i#7.

Now for each given >3, one can apply the least-squares method to
obtain 3,=(Bi(n), B(n), By(n)), the estimator of B=(B,, B Bs), then observe

fta(@) =By(1) + Bo(m) cos T+ By(n) sin x

as defined in (2.2). The estimator of # which satisfies (2.3) is thus given
by

f,=tan™! (.és(n)/ .éz(’”')) .

Lemma 1 implies that g,— 8 a.s., thus 6,—0 a.s., as n—oo, and The-
orem 1 yields the fact that vn (5,.—0) is asymptotically normal. Con-
sequently, a confidence interval for the phase parameter 6 in a circadian
rhythm can be obtained using the results described in Sections 2 and 3.
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