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Summary

In the field, animals, birds and fishes are often distributed inhomo-
geneously. In such situations, the variance of sightings of strip or
line transect survey would be larger than when they are independent-
ly distributed one another. We formulate in this paper the structure
of the patchy configuration, and deduce the variance of sightings of
strip or line transect survey. From this, we see that it is larger
when the patch size (the expected number of objects in each patch)
is larger and the patch radius is smaller.

1. Introduction

Since 1979, the International Whaling Commission (IWC) has been
conducting the sighting survey of minke whales in the Antarctic Ocean.
The abundance is estimated by the line transect methodology with
parallel ship experiments (Butterworth [7], Cooke [11], Hiby and Ward

Table 1. Number of sightings and its variance in the 1984/85 IWC/IDCR Antarctic
mink whale assessment cruise in Area IV W. Variances are based on
inter-transect variance weighted by transect length.

Strata vessel Northeigz'?tratum Intermediate stratum Southern stratum

Survey mode Closing* Passing** Closing Passing Closing Passing
No. of schools

sighted (n) 37 23 26 44 94 78
Variance of » 31.2 68.9 42.9 187.3 570.1 554.9

* Closing mode; when a detection is done, the pods are closed to identify the species
and confirm the school size (Butterworth et al. [10] and Kishino [17]).
** Passing mode; the usual survey mode passing through the pods and going straight
when there is a detection.

Key words and phrases: Line transect, inhomogeneity, patch size, patch radius.
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[14] and Ward and Hiby [19]). Contrary to the usual case, the detec-
tion probability on the track line cannot be assumed to be one in
general, because whales spend most of their time below the water
surface. So, the additional information about the proportion of dupli-
cate sightings in the parallel ship experiment is used for estimation.
Butterworth et al. [8]-[10] analysed the sighting error of distance and
angular from the ship, the school size and the species. Butterworth
[9] and Kishino [16] studied model robustness, and Buckland [4], [5] com-
pared several models. The identification problem of duplicate sighting
was discussed in Kishino [16].

Here we consider about the variance of sightings. Table 1 shows
the number of sightings and its variance in the 1984/85 IWC/IDCR
Antarctic minke whale assessment cruise in Area IV (Butterworth [10]).
It is seen that the variance is usually larger than the number of
sightings. Furthermore the ratio of the former to the latter is larger
in the southern stratum, where whales are abundant and the distribu-
tion of them is considered to be highly patched. If the sighting prob-
ability does not change and the distribution of pods is free from after
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Fig. 1. Examples of patchy configurations. 1040 points are scattered in the rectan-
First, centers of circles are located at random, and then the elements of
r=10 n.miles, the number of elements of each patch »=100 pods per patch,
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effect (Daley and Vere-Jones [12] and Matthes et al. [18]), then the
variance of the number of sightings is the same as its mean. In other
words, the difference between the variance and the mean reflects the
daily fluctuation of sighting probability coming from the fluctuation of
detection ability and the weather condition (Kasamatsu and Kishino
[15]), and the patchily distribution of pods. In this paper, we discuss
the latter factor.

In the field, animals, birds, fishes and so on are often distributed
inhomogeneously. Several hierarchical structures can be found in this
inhomogeneity, that is, from families, schools, patches to sub-popula-
tions. Usually the variance of sightings of objects distributed patchily
is larger than when they are distributed independently one another,
and there are lots of work concerning to this (e.g. Anscombe [1], Bliss
and Fisher [2]).

Figure 1 and Table 2 are the results of simulation of line transect
survey in various degrees of inhomogeneity (Kishino and Kasamatsu
[17]). Here, inhomogeneity is realized by decomposing the scattering
of points into two steps, that is, deciding the locations of patches and
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each ‘patch’ are distributed uniformly in the circle.
b) »=10, =200, c) r=20, »=100, d) =20,

So the density is 0.1 pods per n.miles?.
a) The radius of patches
n=200.
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Table 2.
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The means and standard deviations of sightings by line transect survey—

the result of the simulation study by Kishino and Kasamatsu [17]. For
each of twenty types of patchy distributions, we generate ten configura-
tions and simulate the line transect survey. The table lists the mean
and standard deviation (in parenthesis) of sightings of the ten trials for
each type.

Sightings (%)

N 50 100 150 200
5.00 51.500 (12.545)  38.400 (22.446) 45.900 (21.053)  50.400 (19.225)
10.00 44.000 ( 7.587)  46.600 ( 6.603) 44.500 (12.140)  44.700 (10.100)
15.00 44.900 ( 6.244)  45.900 ( 7.651) 39.100 ( 3.695)  46.500 ( 5.967)
20.00 44.600 ( 5.739)  44.700 ( 7.718)  44.800 ( 5.051)  41.800 ( 8.337)
25.00 41.300 ( 6.038)  46.300 ( 7.197)  44.400 ( 6.132)  46.400 ( 9.082)

then scattering the elements of each patch. Since the density is set
to the constant value 0.1/n.miles?, it is highly inhomogeneous when
the radius of patches is small and the number of elements of each
patch (which we call the patch size) is large. It is seen that the
variance becomes large according to inhomogeneity.

Therefore, we consider how the patch size and the patch radius
influence the variance, in particular of strip or line transect. First, in
the following section, we build a model representing the patch struec-
ture and from this deduce the variance of strip transect. Next, we
modify the model for line transect in Section 3. And last, the case is
treated when the patch size and the patch radius are random variables.

2. Model representation and deduction of variance

In this section, we formulate the patchy distribution and from
this deduce the variance of sightings of strip transect.

As in the Introduction, we decompose the configuration of objects
into two steps. The first is the configuration of patches and the second
is that of elements within each patch. Patches are supposed to follow
the Poisson random field Ny(dz), z¢€ R}, with the intensity measure
A(2)dz (we assume that Ny(-) is non atomic). For simplicity, the loca-
tion of each patch is assumed to be decided by one particular point,
and we shall call this the center of the patch. And within each patch,
its elements follow the Poisson random field. That is, if there is a
patch centered at z ¢ R? the elements of the patch are distributed ac-
cording to the Poisson random field with the intensity measure A{*(x)dx
=4(x—2)dx. Here Ny(-), N\(-); z € R? are supposed to be independent.

With the above model, the number of elements in the region A
is obtained as follows;
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(1) N(4)= SASR, Ny(d2) N©(da) .

The mean is obvious;

(2) E[N(4)]= SA da Sm dz (2)2(z—2)
- SA 2o% (@) .

Here * denotes the convolutions. In particular, when 2,(z) is a con-
stant 2,, it reduces to

(3) E[N(A)]=2|A|4,,
where |A| is the area of A and 4, is the mean number of objects in

a patch, le(x)dx.

The variance is obtained as follows:

PROPOSITION 1. The variance of N(A) s
(4) VIN(4)] = S Ao o)+ Sm A(2)dz {SA A@— z)dx} 3

Remark 1.1. The first term on the right-hand side is equal to the
mean E[N(A4)]. Noting that the variance is equal to the mean when
N(d?) is itself Poisson random field, that is, when each object is inde-
pendent one another, the second term represents the increase of the
variance coming from fluctuation of patch locations.

Remak 1.2. We consider the second term as a function of the
patch size 4, and the ¢ patch radius’ ¢. Let 1, be expressed as

2w =22 p(wlo)
o
where p is the probability density and write the second term as f(o, 4,).
Because 1j(-) tends to 4,3(-) as ¢ | 0, where 3(-) is Dirac’s delta func-
tion, we get from (4)
(5) F+0, )=, 1@z
On the other hand, noting that f(o, 4,) is rewritten as

(6) fo, )=, 1@de| , . towan],

we get
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(7) f(o0, 4)=0.
ProOF. Because V[N(A)] is expressed as
VIN(A)]=E[N(A)1—{E[N(A)]}*,

we will calculate E[N(A))]. In the expression

@) N@r=], [ NN @NE )Nz,

AxASR”x

we note the following ;
(i) Since N(-) is the Poisson random field,

(9) E[Ny(dz) Ny(dz:)] = 2o(21) Ai(2:)d21d 2, + 8(2— 25) Ao(2,)d 2,2, .

(ii) As for N{®(dx), noting that N*(.) and N{*»(-) are independ-
ent to each other if z,+#2z, we get

(10) E[N*>(dx,) N #>(dw,)]
A%y — 20) 2y(%, — 22)da, A0y 4 3 (0, — 205) Ay (0, — 2, )d 2 Az,
—_— if 21 = Z2

ll(xl - zl)zl(xg - zz)dxldxz ) if 21 :# zZ .

Therefore
(11) E[N(A)]= SR’ R A(z1)Ao(z:)dz,dz, SA o (2, —2)) A4 (20, — 25)d e, dac,
+ SR’ 2(2)dz {SA A (e, —2) (2, — 2)d 2, d,
+ SA Zl(x—z)dx}
- { SA Ao Zl(x)dx} "+ SA 2% (@)
+ SR’ zo(z)dz{SA 2.(x—z)dx} ’ ,
from which we get the conclusion.

Ezxample 2.1. As an example, we calculate f(s, 4) for the case
when

W(Z)=2,
12) 4 w
ofap) — A1 1Y
%i(y)= 2ra? °xp { 2_02-} ’

By Fubini’s theorem, it is easily seen that



VARIANCE OF SIGHTINGS IN THE SURVEY 281

Note: Since L is usually much larger than w and ¢ in

27 - the strip transect, the second term in the paren-
Gg thesis of (15) is approximately A;¢1(w/o).
D.o.on " Qoo ' e00 ' 12.00 16.00' 20.00  24.00 = 20.00 '
S
Fig. 2. Graph of gi(s).
__ Aodi S {_ le—xﬂz}
13) Sf(o, 4)= drat Jaxa exp o dedx, .
Let A be a rectangular [0, w]x[0, L], w>0, L>0. By
1 w w (u__,v)z w x
14 S dug dv ex {— }:S {20 )-—1 dzx ,
(14) 2V g Jo 0 P 4q* 0 vV2a

where &(-) is the cumulative function of the standard Normal distri-
bution. The variance of N(A) is written as

(15) VIN(A)1=E[N(A){1+ 4,9.(s/w)g.(a/L)} .
Here the function g,(s) is defined as
(16) gi(s)=2 S:a)( - >d:c—1.

Obviously, g,(s) is decreasing, so the second term in the parenthesis is
proportional to 4, and the decreasing function of the patch radius o.
Figure 2 gives the graph of g(s).

3. Modification of model to line transect

While it is assumed in the strip transect that all objects in the
strip are sighted, in the line transect the detection probability de-
creases in general with the distance from the course line (Buckland
[3], Burnham et al. [6] and Hayes and Buckland [13]). So the number
of sightings in the line transect is expressed as
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an N= Smgm Ny(d2) N(da)K .

Here {K“;x ¢ R!} are random variables distributed as

1 with probability c(x)
(18) K"":{
0 with probability 1—c(x),

where ¢(-) is the detection function and assumed to be in L(R?.
Ny(-), Ni(-); z€ R and K*; x ¢ R* are independent one another.
As for the mean of N, (2) is modified as

(19) E[N]= Sm dz Sm dz 1(2) (@ —2)e(®)

- Sm Lok (x)e(x)dw .
In particular, when 2,(z) takes the constant value 1, (3) becomes
(20) E[N]= 12,4, Sm e(x)da .
If we take as c¢(x) the indicator function I,(x), the above equations
are easily seen to include (2) and (3).

Now let us consider the variance of N.

PROPOSITION 2. The variance VIN] of N is written as
2
@1) VIN]=E[N]+ Sm zo(z)dz{ Sm ll(m—z)c(x)dx} .

Remark 2.1. Obviously, this is an extension of (4).

Remark 2.2. Corresponding to the Remark 1.2 of Proposition 1,
we can say the following. Let 2i(y) be as in Remark 1.2. We write
the second term on the right-hand side of (21) as f(a, 4,),

22) F(+0, 4)= 142 SR, A()e(xydz .

And, as f(s, 4,) can be rewritten as

(23) flo )=, 1@da{| L, o)toy+2)y]
29 fleo, 4)=0,

if ¢(x) | 0 as |x] — oo.

PRrROOF. Besides the comments in the proof of Proposition 1, we
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note the following;

c(z,) if xz=uw,
(25) E[K(Il)K(Zz)] — {

co(@,)e(,) if @#,.

Then we can caleulate E[N’] as
26) E[NY= Sm Zo(z)dz{gm A(@—2)e(z)de
+[ o 1= DA @ — D)@ el d
+SR‘ A(z) Aoz daidz, Sm Ay — 2) (st — zm)e( () da,dr, .

As the first and the third term of the three are equal to E[N] and
{E[N1]}?, respectively, the results follow.

We calculate (21) for two types of detection function in the line
transect. One is the half normal model and the other is the negative
exponential model.

Example 3.1. Let
2
@7) ofz)=a exp(—-2 ) Lo 10

where « and y are the coordinates of the vector x € R’.. 4, and 2, are
as in Example 2.1. The effective width w is

(28) w=+ 2z av,

so the mean of N is

(29) E[N]=+ 2z A d,avL .

It is easily seen that

—a A 1 o —x,) _ xita;
(30)  flo, 4)= "ttt LoiolL) 5 — Sm exp{—( o ) o }dxldxz,

where g,(-) is introduced in Example 2.1. Calculating the integral,
we get

(31) VIN]1=E[N1{1+a4,g,(s/L)ga/v)} .
Here
(32) g:(8)={2(1 +8)} 2.

It is similar to Example 2.1 that the second term on the right-hand
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side of (31) is proportional to 4; and decreasing with a.
Example 3.2. 1,and i, are as in the previous example. Let ¢(x) be
(33) o(, ¥)=a exp (—|&|/v) L, 11(v) -
Then the effective width w is
(34) w=2av
and the mean of N is
(35) E[N]=224,avL .
f(a, 4,) is seen to be

(36)  flo, 4)
= zo.lﬁang[(U/L)

1 _ (my—my) leH'lle}
e I L

Calculating the integral, we obtain the variance of N as
(37) VIN1=E[N]{1+a4,9,(s/L)gsa/v)} .

Here the function gy(s) is defined as

(38) gi(s)= {s+ (1—28?) S“’ exp (sz—ﬁ)dt} .

1
e
Figure 3 shows its graph. Comparing Examples 2.1, 3.1 and 3.2, the
latters are decreasing with the radius of patches more slowly than the
formers. This is because the tail of the detection curve drags longer
for the latter one.

0
pu Note: The second term in the parenthesis of (37) is
o approximately aA;gs(o/v) in the usual line

transect.

T T T T T T T T 1
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
S

Fig. 3. Graph of gs(s).
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4. Randomness of 4, and ¢

In the preceding sections, the intensity measure i{”(-) of N)(-)
is assumed to be deterministic. But the patch size and the patch
radius are likely to vary from patch to patch. So in this section, we
take into account the randomness of {”(.).

We assume that i{”, z¢ R® are independent one another and to
Ny(+), Ni(-); ze R’. Then the mean and the variance are expressed
as follows;

(39) E[N]= Sm A(2)dz SR, E[4(z —2)]e(@)d
and
(40)  VINI=EINI+{,, 28z |, Bt (e~ )a(m—alom)o@)dmda,

Here, the expectation in the right-hand side of (39) and the second
term of (40) are for patch size 4, and patch radius .

5. Concluding remark

We have considered how the variance of sightings of strip or line
transect relates the patch size and the patch radius. Fixing the den-
sity, the configuration is more inhomogeneous when the patch size is
larger and the patch radius is smaller. When the objects are distrib-
uted patchily, the variance of sightings is larger than when they are
independent one another. The part of variance coming from patch-
ness is proportional to the patch size and decreases with the patch
radius. If we combine the distribution of perpendicular distance of
sightings, the variance estimate based on the inter-transect variance
and the process of the time intervals between sightings, we will be
able to obtain the information about the patch condition and the vari-
ability of sighting probability. This is left for our future study.
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