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Summary

Pfanzagl (1962, Zeit. Wahrscheinlichkeitsth., 1, 109-115) showed that
a dominated family of probability measures has monotone likelihood
ratios with respect to some real valued statistic if there exists a set
of tests which has certain nice properties. A similar characterization
was given by Dettweiler (1978, Metrika, 25, 247-254), who did not as-
sume domination. However, Pfanzagl’s result is not a special case of
the one proved by Dettweiler. We present a theorem which comprises
the results of both authors. Our proof shows that not all conditions
introduced by them are needed. Furthermore, we investigate the ques-
tion concerning the generality we get if we do not assume domination.

1. Introduction

Let (2, A) be a measurable space and let ca,(_1) be the set of all
probability measures on . We use E, to denote the expectation with
respect to Pe ca,(_1). We write [P] instead of “P-almost everywhere”
and [P] instead of “[P] for all Pe P ” whenever PcCca,(A). A test
¢ is a real valued measurable function defined on £ such that 0<¢<1.
For P, Q€ ca,(A) and a test ¢ we write P,Q if ¢ is most powerful for
testing P against @ at level Ep¢ and 1—¢ is most powerful for testing
Q against P at level Eq(1—¢). If ¢ is fixed, this definition provides
a reflexive and transitive binary relation (preorder) on ca,(f). In
Pfanzagl’s ([10]) notation P,Q means “¢ trennscharf P:Q”. If ¢, ¢
are tests and if ¢ is most powerful for testing P against @ at level
E;p, then the following assertions hold.

(1.1) Epp=<Eqp.
(1-2) If EP¢=07 then ¢1(¢>0):1(¢>0)[Q].
(1.3) If P{0<¢<1}=0, then Q{0<p<1}=0.
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(1.4) If ¢=<¢ [P], then ¢=¢ [Q].
We say that P, Q € ca,(.4) have monotone likelihood ratio with re-
spect to an extended real valued statistic T' and write P<,Q if there

is a non-decreasing function A from R to R such that

Q(dP_j . ¢
dul da (o],

where p¢=P+Q and a/0=oc0 for a>0. Each pair P, Q¢ cai(A) has
monotone likelihood ratio with respect to a statistic T which is equal
to (dQ/dy)/(dP/dy) on {dP/dp>0}U{dQ/dp>0}. If T is fixed, <, defines
a partial order on ca,(4). In the literature, T is usually assumed to
be real valued. The set 4 of all tests ¢ of the type =174+ 71Lir=0)

ce R, 0<y<1, has some nice and well-known properties of optimality
for each pair P, Q with P<,Q (see for example, Karlin and Rubin [6],
Lehmann ([7], p. 68), Pfanzagl ([10], p. 112), Heyer ([5], p. 84) and
the next section of this paper). Furthermore, 4 is obviously totally
ordered.

The aim of the papers of Pfanzagl [8], [10] and Dettweiler [2] is
to show that under suitable additional conditions families of probability
measures which have monotone likelihood ratios with respect to a sta-
tistic 7" can be characterized by the existence of a set of tests which
has some of the properties of the set 4. We will prove a more gen-
eral result. It will be shown that some of the conditions introduced
by Pfanzagl [10] or Dettweiler [2] are not needed. Furthermore, we will
see that families of probability measures which are totally ordered with
respect to <, for some statistic T and which are not necessarily dom-
inated are majorized in the sense of Siebert [12].

2. Some properties of statistical experiments with monotone
likelihood ratios

Let T be an extended real valued statistic on 2 and let 4 have the
same meaning as in Section 1. For each P € ca,(_f) we define Hp.=inf {t €
R: P{T>t}=0} and h,=sup{tc R: P{T=t}=1} (we make the conven-
tions inf@=cc and sup@=—o0). Put I,=[—o0, Hp] if P{T=H,}>0
and otherwise I,=[—oo, Hy[. Furthermore, set Jp=[hp,0] if P{T=
hp}>0 and otherwise Jp=1lhp, ]. Define Z,=I.NJp. The following
lemmas are essentially known (see for example, Karlin and Rubin [6],
Lehmann ([7], p. 68), Pfanzagl ([10], p. 112), or Heyer ([5], p. 84)).

LEMMA 2.1. a) If Pecay(A), then P{T € Z}=1.
b) If P, Qeca(S) and P<,Q, then Q(-N{T e L)X P and P(-N{T ¢



MONOTONE LIKELIHOOD RATIO 265

JH«@Q.
c) Suppose P, Qe ca(A) and P<,Q. Then Zpy=Z, iff P and Q are
equivalent. If Z,=Z, and Zp is degenerated, then P=Q.

LEMMA 2.2. a) If Pecay(A) and a€[0,1], then there is a p€c 4
such that Erp=a.
b) If P,Q¢ccay(A), P<.Q, o€ 4, 0<Epp and Ey<1, then PQ.
¢) If P,Q, Reca(A) such that R s equivalent to P and Q=R and if
gap=1u~$1p,, then ©p €4, EPSDP:O and RPPQ.
d) Suppose O+ Mcca(A) and k=sup{Hp: Pe M}). Put D=[—oo, k]
of there 18 a Pe M with P{T=k}>0, and otherwise put D=[—o0, k.
If o€ such that op=1(7r¢, or Epp>0 for some Pe M, then ¢lirep =
1{T$Dl-
e) If Peca(A), pe 4, P{0<p<1}=0 and 0<E o<1, then Q(0<p<1}
=0 for all Q¢ ca,(A) with the property Q=P or Q= ,P.
f) Suppose ¢=1154+711iz=sy. Then 0<Epp implies s€ I, and Eyp<1
implies s € J,.

A subset M cca,(A) is called majorized if there is a measure x on
A such that every P e M has a density with respect to x4 (see Siebert

[12]).

PROPOSITION 2.3. A subset M of ca,(A) which is totally ordered
with respect to <, 18 majorized.

PrROOF. We define an equivalence relationon U Z,. Two points
PeM

2, y of this set are called equivalent if there is a non-empty finite sub-
set S M such that PU Zp is an interval and z,y€ U Zp. Let {4,
eF PeF

i €I} be the family of all equivalence classes where i€ A,CR for all
tel

Suppose A, is not degenerated. It easily follows from the above
definition that there is a countable subset 9/, c M with 4,= U Z,.
QeW,

If Pe M and Z,CA,, then P(A)=P( U (ANn{TeZ)))= > P(ANn
QeW: QeW,

{TeZ,}). Hence Lemma 2.1.b) implies that P is absolutely continuous
with respect to 94/, since M is totally ordered. We conclude that for
each i€l there is a gy, €ca)(A) such that Py, for all Pe M with
ZpCA, (if A, is degenerated, use Lemma 2.1.c)). M is majorized by
the measure p=i§ M

Remark 2.4. a) If 2=R, A=%P, and T=1d;, then Z, is identi-
fied with Pfanzagl’s ([11], p. 1219) convex support of P. The set of
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all ¢ e I such that A, is not degenerated is countable. 9 is dominated
if it contains at most countably many Dirac measures (then the set of
all 7 € I such that A, is degenerated is at most countable). This result
was proved by Pfanzagl ([11], Theorem 3) by means of a topological
argument.

b) Let i consist of all sets AC £ such that AN{T € Z,} e A for every
Pe M. From the definition of 4 (proof of Proposition 2.3) it is clear

that it can be extended to a measure 4 on i and that (2, J, 4) is
strictly localizable (Fremlin [3], p. 172, a direct sum of finite measure
spaces). Experiments majorized by a localizable measure retain several
properties of experiments dominated by a finite measure (see for ex-
ample, Ghosh et al. [4] and the references given there).

Let A* be the set of all o€ 4 such that for some Pe¢ 9, we have
¢0=1(rer, Or 0<Epp<1l and P{0<e<1}=0. The following properties
Propositions 2.5.a) and b) are quite obvious for a dominated set M
which is totally ordered with respect to <, if the map S is defined by
S(¢)=E,(1—¢) for some equivalent finite dominating measure g.

PROPOSITION 2.5. Let M be a non-empty subset of ca,(A) which 1s
totally ordered with respect to <,. Then there is a map S from A* to
R with the following properties.

a) If ¢, ¢ € 4* and ¢=¢ [M], then S(p)=S(¢); moreover, if p=¢ [H]
and Pl{p<$}>0 for some Pe M, then S(p)>S(¢).

b) If ¢eA* and if I' is a non-empty, countable subset of A* such that
o=@ [M] for all ¢ € I' and inf {S(¢): ¢ € I'}=8S(¢), then sup{Eq¢: ¢ € I'}
=Eqp for all Q € M.

PrOOF. Let {A,, 7 € I} be defined as in the proof of Proposition 2.3.
We assume that ¢ is a real interior point of A, if A; is not degenerated.
We define a partition of A*. Put 4,={1;r.4} if ¢€I and A, is degen-
erated. If A, is not degenerated, then let 4, denote the set of all ¢ € 4*
of the type ¢=1,754+7117r-, for some sec A;. Since H is totally order-
ed with respect to <,, we get from Lemma 2.2.e) that P{0<¢<1}=0
for all Pc M and o € 4*. We have A*=U 4;: If o=1.4+7liro, € 4*

iel
and 0<E;¢<1, then se Z, and Z,C A, for some ¢ € I (see Lemma 2.2.f)).
This A, is not degenerated. Thus ¢€ 4;,. If p€ A4* and Eyp € {0, 1} for
all Q € M, then ¢p=1r¢s, for some Pe M. Hence o=1i7., or o=17;
for some 7€l If the corresponding A, is degenerated, we have o=
1ir5y. Indeed, ¢=1r;, would imply that Z,U{s} is a non-degenerated
interval which is contained in A,.

Obviously, for each 7 €I such that A, is not degenerated, there is
a ¢,>0 with the property that i+4¢; is an interior point of A4, We
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define S by S(<p)=ctE,,i(1—¢)+i if pe 4, and A, is not degenerated and
S(@)=Sr>y)=1 if ¢ € 4, and A, is degenerated (g, as in the proof of
Proposition 2.8). Straightforward calculations show that S has the above
properties.

3. Conditions for the existence of monotone likelihood ratios

In order to characterize (among other things) subsets M cCca,(A)
which are totally ordered with respect to <, for some suitable statis-
tic T, we introduce the following set-up. Let . be a non-empty sub-
set of ca,(f). Suppose HMCPcCcay(A) in such a way that for each
Pe P there is a Q € M which is equivalent to P. For each Pe &P let
9, be a subset of ca,(f) with PeJ¥,. Assume that for P, Qe M
we have Pe 9/, or Qe W p. Put Q=pU_CPCW”'

€

Remark 38.1. It is not generally true that an order < is defined
by “V=W iff We9/,”. Indeed, put MU=P=(e) e, &} and W, =
{eisrmoasy}, Where e, denotes the Dirac measure at 7. But if < is an
arbitrary partial order on a subset %P’'cca (1) such that HcC P’ and
M is totally ordered with respect to <, then the above conditions on
9y, are fulfilled with HcCc Pc P’ and W,,={Qec P':Q=P}, Pe P.

Let 0'Cc® be sets of tests on (2, A). Our aim it to give condi-
tions on @, @', M, P and {Wp, P € P} which imply that there is a sta-
tistic T such that each pair P, @ with Pe 2 and Q € 9/, has monotone
likelihood ratio with respect to T.

CONDITION 3.2. (On @, @', M, P and {W5,, P P}) a) For every
2 €]0,1[ and Pe P there is a ¢ € @ such that Epp=a.
b) If Pe P, Qe Wy, €@, 0<Epp and Eyp<1, then PQ.
c) For every Pe &P there is an M, € 9 which is equivalent to P and
a £pc® such that E;(,=0 and P.,Q for every Qec9Y,. Moreover,
(Mp),,V for every Ve Wy, NM.
d) If ¢, ¢ €@ and ¢<¢ [H], then ¢<¢ [Q]. @ is the set of all pc @
such that ¢=¢, for some Pe P or o=1q/ur+e)>cariacr+on [P] and 0<
Epp<l for some Pe P, Qe W, and 0=<c<o. There is a map S: ¢
— R with the following properties.
e) If o, ¢ €@ and ¢=<¢ [P], then S(p)=S(¢); moreover, if p<¢ [P]
and P{o<¢}>0 for some Pe P, then S(p)>S(¢).
f) If ped and if I' is a non-empty, countable subset of @’ such that
¢S@[P] for all g eI' and inf {S(¢): ¢ € I'}=8(¢), then sup{Eq¢: ¢ €
I'}=Ep for every Q¢ Q.

Example 3.3. a) Suppose M is totally ordered by =<, for some



268 DIETER MUSSMANN

statistic 7, P=M, Wr={Qcca(S): Q=,P,Q& M}, Od=4 and &.=
lizers. If 0<a=P{dQ/du>cdP|dp}<1 where 0=c<oo, P,Q €caA),
p=P+Q and P=<,Q, then there is a ¢c 4 (see Section 1) with ¢=
1soapsearsam [P]- Indeed, by Lemma 2.2.a) there is a ¢ €4 with Epp
=a. The rest follows from the Neyman-Pearson-Lemma. Thus we
have ¢'c 4*. Using Lemma 2.2 and Proposition 2.5, we see that Con-
dition 3.2 is fulfilled.

b) If M is given as in a), PD .M, and for each Pe P thereisa Q € M
which is equivalent to P, then, by Lemma 2.2 and Condition 3.2 is fulfill-
ed if Wr={Qecca(A): Q=:P, Q(-N{T e DY« M} (PeP), O={pe d:
¢=1(rer) or Epp>0 for some Pe M} and &p=1(1¢sp}-

¢) Suppose 2=R, A is the power set of R, HMH=P is the set of all
Dirac measures on 4, @ is the set of all tests of the type ¢=al,+
1,05 @ % € R. Then Condition 3.2 is fulfilled with M,=P for all Pe¢
P, W. ={e,:y=2a), € =lpur, O'={lyo: € R} and S(1y,«)=2%, T € R.

PROPOSITION 3.4. Suppose that Condition 3.2 holds. If ¢, ¢ ed’,
then ¢<¢ [M] or ¢=<¢[H].

PrRoOF. First we prove that §,<6, [M] if P,Qe€ P and Mg e Wy,
By Conditions 3.2. b), ¢) and (1.1), Ex,§,=0. Applying Condition 3.2. b)
and (1.1) gives E, £,=0 for every Ve M such that M, e 9/,. By (1.4)
and Condition 3.2.c¢), §q=¢&,[V] for all Ve Wy, NM.

Next we suppose Pe M and 0<Erp<1l. Then ¢ <¢[P] implies ¢
So[M], and ¢=<¢ [P] implies ¢=<¢ [H]. Indeed, suppose ¢=<¢ [P].
Then we have E ¢ <E,p<1l. If Ve ,, then E,o=1 or, by Condition
3.2.b), P,V, and (1.4) implies ¢<¢[V]. If Ve M and Pec DY, then
E,¢=0 or, by Condition 3.2. b), V,P. Then (1.4) implies ¢ <¢[V]. The
proof in the case ¢<¢ [P] is analogous.

It remains to prove that ¢ <¢[P] or ¢<¢ [P] if o=14¢/a.>car/an [P]
and 0<Epp<1, where Pe P, Qe Wp, 0=c< and y=P+Q. The proof
of this assertion is more or less the same as the one of Pfanzagl’s ([10],
Hilfssatz 2). If Ep¢=0 or Ep¢=1, there is nothing to be proved.
Suppose 0<Ep¢<1. It follows from Condition 3.2. b) that ¢ is most
powerful for testing P against @ at level E,¢. The Neyman-Pearson-
Lemma shows that there is a ke€[0, oo such that 1u¢uuzrarn=¢=
1ioausraram [#]. The rest of the proof is easy.

In Proposition 3.4 we have P{0<p<1}=0 for every Pe¢ M and ¢
e®'. Indeed, by (1.2) and Condition 3.2. ¢), V{0<£,<1}=0 for all Ve
Wu,NM. On the other hand, by Condition 3.2.b) and (1.1), E,£,=0
for all Ve M such that M, € 9/,. Now suppose 0<Eq p<1 and Q{0<
¢<1}=0 for some Q¢ M. Then Condition 3.2.b) and (1.3) imply that
V{0<p<1}=0 for every Ve, and V{0<e<1}=0 for every Ve M
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such that Qe 9/,. We conclude that instead of tests ¢ from @’ we could
have used the sets {¢=1} or {¢=0}. In analogous situations, Pfanzagl
({10], p. 114, the set ) and Dettweiler ([2], p. 250) considered sets of
the type {¢=0}. Proposition 3.4 replaces Pfanzagl’s ([10], Hilfssatz 2)
and Dettweiler’s ([2], assertion (F)). If we replace R in Example 3.3. ¢)
by the set of all rational numbers, then in this example Pfanzagl’s set
C consists of all intervals ]—oo, [ and ]—oo, 2], « rational.

4. Conditions of Pfanzagl and Dettweiler

Pfanzagl ([10], p. 110) considered a set of tests @ and a non-empty
dominated set M Cca,(_A) which bears a total order <. He introduced
Conditions 3.2.a) to ¢) where M=P=0Q, Wr={Q € M:Q=P}, M,=P
for all Pe . Obviously, this implies that all of Condition 3.2 are ful-
filled (we may put S(p)=E,1—¢) for all ¢ € @', where y is a dominating
finite measure). Under the additional assumption that for every Pe(Q
there is a ¢ € ® such that E,¢=1 and Q,P for every Q< P, Pfanzagl
([10], p. 110) proved that there is a real valued statistic T' such that
P<,Q whenever P,Qe(Q and P<Q. We shall see that only Condition
3.2 is needed.

Dettweiler ([2], Theorem 1) considered a set of tests ¢ and non-
empty subsets PcQceca,(A) where Q bears a partial order < with
the property that for all Pe ¢ and Qe Q there is a Ke P such that
K<Q and K<P.

PROPOSITION 4.1. Suppose that for every a€[0,1] and Pe P, there
18 @ ¢€® such that Epp=a and that P,Q +f Pe P, QeQ, P<Q and
o €®. Then all probability measures from P are equivalent and there
18 a G € such that P(G)=1, Q(- NG)KP and y(1—1,)=1-1,[Q] for
all Pe P, Qe Q and y e d. Furthermore, Condition 3.2 is fulfilled with
Wer={QecQ:Q=P}, M=(K}, M;=K and S(¢)=Eg(l—¢) for all Pc P
and ¢ € &', where K € P 1is arbitrary.

PrROOF. Suppose K, Pe . We will show that K and P are equiv-
alent. There is a @ € & such that Q<P and Q<K. We can find a ¢ €
o such that Ep=1, QK and Q,P. Now a simple application of (1.2)
gives QK P and QK. On the other hand, there exist ¢, y€® such
that Ex¢=0, Q,K, Epxy=0 and Q,P. Then (1.2) shows that K<Q and
P«Q. Thus K and P are equivalent.

Let K€ P be fixed. There are tests ¢, ¢ € ® such that Exp=0,
Ex¢=1, PQ and P,K whenever Pe P, Qe (Q, P<Q and P<K. De-
fine G={p=0}N{¢=1}.

For a fixed Q@ € Q there is a Pe P such that P<@Q and P<K. If
K(B)=0, then from (1.2) we get (1—¢)l;=1;[P]. Using again (1.2),
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this implies ¢ly_1;ns=1y-1n5 [Q]. Hence Q(GNB)=0. From P«KK, we
get P({le>0tUu{p<1})=0. If x€¢o®, then P,Q. Applying (1.2) gives
2Lisonuw<y=1lpsauiw<y [@]. The rest of the proof is obvious.

Dettweiler ([2], Theorem 1) showed that under the premise of Pro-
position 4.1 and two additional assumptions there is a real valued sta-
tistic T such that P<,Q whenever Pe P, Qe (Q and P<Q. We shall
see that this result follows from Condition 3.2 alone. Dettweiler as-
sumed that there is a sequence (P,) in & which has the property that
for each P¢ P there is a positive integer m such that P, <P, and that
Q,Pif PeP, QeQ, Q<P and ¢c?.

Example 4.2. a) In Example 3.3.c¢) & is not dominated. There-
fore neither Pfanzagl’s nor Dettweiler’s conditions hold.
b) If in Example 3.3.¢) we take the set of rational numbers instead
of R, then Pfanzagl’s conditions are fulfilled, but Dettweiler’s ones are
not, since the premise of Proposition 4.1 does not hold: If 0<y<1,
P=¢;,, Q=¢; and ¢=1;;+7ly o, then P,Q is not true.

5. Main results

Suppose that Condition 3.2 holds. The aim of this section is to in-
troduce a statistic T which has the property that P<,Q whenever Q¢

9Y, and Pe P. Let FCR be the image of @' under S. Put
F0=L=J {beF: 1b,b+1/n[cR\F} and F,=F\F,.

Then F, is countable. Furthermore, let F, denote a countable dense
subset of F;. For every bec FyUF;, we choose a ¢ € @ such that S(p)=
b; in this way, we get a countable subset Fc®'. The definition of
¥ differs from the definition of certain countable sets which were used
by Pfanzagl ([8], p. 171) and Dettweiler ([2], p. 251) for the same pur-
pose. It resembles more Dettweiler’s definition than Pfanzagl’s one.
Dettweiler’s condition (H), (C2) makes no sense; this is certainly due to
misprints.

The following definition is completely analogous to those given by
Pfanzagl ([8], p. 171) and Dettweiler ([2], p. 252). For each w e 2 we
put

T(w0)=inf {S(¢): ¢ € T; ¢(0)=0}
if we Ulr {x=0} and otherwise T(w)=o.

Remark 5.1. Without loss of generality we could have assumed S
to be real valued and bounded. In this case, in the definition of T,
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o could be replaced by a real number which is greater than every
S(¢), and T would become a bounded real valued function.

The next result replaces Pfanzagl’s [8], Hilfssatz 1 (see also Pfanzagl
[10], p. 114, (10)). The proof is almost the same as part (a) and (b)
of Pfanzagl’s proof. Part (c) of that proof is not needed because of our
definition of F,. Moreover, the argument of part (¢) cannot be used
under our conditions. This can be seen by means of Eexample 3.3. c),
since then, roughly speaking, sup{S(¢):¢ € I'}=S(p) does not imply
inf {Ep¢: ¢ € I''=Epep.

LEMMA 5.2. Suppose that Condition 3.2 holds. Let S be real valued
and T(w)>—oo for all weR. Then T is measurable and, if ¢€?',
then ¢=1r55s¢y [Q].

ProOF. The measurability follows from
(5.1) {T<a}= U {¢=0}.
¢e¥,5()<a

It suffices to show that {¢=0}={T<S(¢)} [Q]. From (5.1), Conditions
3.2.e) and d) we get

(5.2) {T<S(@}c{e=0} [O]
for all pe@'. For each ¢ ¢ ¥ we have
(5.3) {p=01c{T=S(p)} .

Suppose ¢ € @',

Case 1. S(¢) ¢ Fy,. Then there exists a y € & such that S(y)>S(¢),
and

S(p)=inf {S(¢): ¢ € T, S(¢)>S(e)} .
Now Condition 3.2. f) implies
Eqp=sup {E¢¢: ¢ €T, S(¢)>S(p)} for all QeQ.
This is equivalent to
Qlp=0}=inf {Q{¢p=0}: ¢ € ¥, S(¢)>S(¢)} for all QeQ.

Using Conditions 3.2.e) and d), we have {¢=0}D{p=0} [OQ] whenever
S(¢)>S(¢). Therefore we conclude

le=0}= N  {p=0} [Q].

¢e¥,85(4)>8(p)

On the other hand,
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{T=S}= _n (T<S(}= _n (T8¢},

Pe?,8(¢)>8(p) $e¥,8(¢4)>8(p)

and by (5.2) and (5.3), we get
{TsS@}= N {¢=0} [O] .

$e¥,S>5(9)

Case 2. S(¢) € Fy,. Then there is a ¢ € ¥ such that §=¢ [P]. Hence
&=¢ [Q], by Condition 8.2.d). From the definition of T and ¥ it fol-
lows that {T=S(p)}c{£=0}. Hence {T=S(p)}c{p=0}[Q]. By (5.2) and
(5.3), we get {T<S(e)}={p=0} [O].

We need one more lemma which easily follows from Condition 3.2
and (1.2).

LEMMA 5.3. Suppose that Condition 3.2 holds, Pe P, Q€ Wp and
p=P+Q.
a) If P{dQ/dp>cdP[du}=0 for some c€ [0, o], then

1{dQ/dp>ch/dp]=1{dQ/dy>0,dP/dp=0}=EP [,u] .
b) If P{dQ/dp>cdPldp}=1 for some c€ [0, ], then
{dQ/dp>cdPldp}=2 [p] .

Now we can prove our main result. One essential difference to the
methods used in an analogous situation by Pfanzagl ([8], pp. 174-176
and [10], p. 115) and Dettweiler ([2], pp. 152-1563) is that we make use
of a well-known factorization theorem due to Doob.

PROPOSITION 5.4. Suppose that Condition 3.2 holds. Then there is
a statistic T such that P<,.Q for all Pe P and Q€ I/ 5.

PrRooF. Because of Remark 5.1, we assume without loss of general-
ity that S is real valued and T(w)>—oco for all we 2. Put p=P+Q.
If ce[0, 0] and 0<P{dQ/dp>cdP/dp}<1, then there is a test ¢, €@’
such that ¢.=14¢/4u>car/ay [g]. This follows from Condition 3.2.a) and
the Neyman-Pearson-Lemma.

If ce€[0, oo] and P{dQ/dp>cdP/dp}=0, we define p.=&; (see Lemma
5.3.a)). If P{dQ/du>cdPldu}=1, we put ¢,=1, (see Lemma 5.3.b)).

Obviously, ¢.<¢. [P] for ¢<c¢’. As in the proof of Proposition 3.4,
we get ¢.<Z¢. [P] for ¢<c’. Therefore a non-decreasing map m from
[0, o] to RU{—oco} is defined by m(c)=S(p.) if P{dQ/dp>cdPldp}<1
and m(c)=—oo otherwise. Put

T@fife it Lw>o
g(w)=
oo otherw1se .
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If P{dQ/du>cdP|dp}<1 and ¢< oo, by Lemmas 5.2 and 5.3.a), we get
{9> c}={dQ/dp > cd Pldp}={p.=1}={T >m(c)} [x] .
If P{dQ/dy>cdP|dp}=1, then ¢<co and, by Lemma 5.3.b),
{9>c}={dQ[dp > cdPldp}=2=(T > — co}={T >m(c)} [g] .
If ¢=o0, then, by Lemmas 5.2 and 5.3. a),
{g=co0}={dPjdp=0, dQ/du>0}={¢,=1}={T>m(c0)} [x] .

Now we use the proof of the well-known factorization theorem due
to Doob (see Dellacherie and Meyer [1], 13-1-18): If we define

gn=l§ k2" 1(k2“"<q§(k+1)2_")+ °°1w=w)

for each positive integer m, then g=supg,. We have g,=h,o T [g],
where "

h.(8)= g.i k27" Lymga—ny, mcce+0-m1(8) + 00 Limceny, () -

Since m is non-decreasing, each h, is non-decreasing. Arguing similar
as Dellacherie and Meyer [1], we see that there is a non-decreasing

map h: R— R such that g=h o T [g].

Remark 5.5. Proposition 5.4 obviously implies that M is totally
ordered with respect to <.
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