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Summary

A Bayesian approach to nonstationary process analysis is proposed.
Given a set of data, it is divided into several blocks with the same
length, and in each block an autoregressive model is fitted to the data.
A constraint on the autoregressive coefficients of the successive blocks
is considered. This constraint controls the smoothness of the temporal
change of spectrum as shown in Section 2. A smoothness parameter,
which is called a hyper parameter in this article, is determined with
the aid of the minimum ABIC (Akaike Bayesian Information Criterion)
procedure. Numerical examples of our procedure are also given.

1. Introduction

The purpose of this paper is to consider the procedure to estimate
the power spectral density of nonstationary process. We turn our at-
tention to processes whose statistical properties make gradual or abrupt
change such as seismographic records, records of atmospheric turbu-
lence, records of brain wave and time-seriesed clinical records.

Many authors have developed their procedures to deal with such
nonstationary processes. Page [11], Priestley [12], [13], Bendat and
Piersol [4], Mark [9] and Hino [5] approached this problem by defining
their own nonstationary power spectral densities with the aid of the
frequency domain time series analysis. It seems to us that their pro-
cedures are not practical. For instance, Page’s instantaneous spectrum
may take negative values for certain processes and so his spectrum is
not relevant from the point of view of physical interpretation. Bendat
and Piersol’s generalized spectrum depends on the behavior of time
series over all time and cannot give us the spectral properties of the
process at specific time ¢. Priestley did not give the criterion to select
the weight function which is contained in his definition of evolutionary
spectrum, though estimated spectrum depends on the weight function.
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Physical spectrum and developing spectrum defined by Mark and Hino
contain the ensemble average in their definitions. In the case only one
observed series is given, we cannot apply their spectra without replac-
ing the ensembles average by a time average. These are why their
procedures seem to be unpractical.

Other approaches to nonstationary processes were made with the
aid of autoregressive type models by Rao [14], Ozaki and Tong [10],
Kitagawa and Akaike [6], [7], Akaike [1] and Kitagawa [8].

Ozaki and Tong [10] considered a locally stationary process. Time-
seriesed data are divided into several blocks and in each block a sta-
tionary autoregressive model is fitted to data. They determined the
partition of the data into blocks by the minimum AIC (Akaike Informa-
tion Criterion) procedure. Kitagawa and Akaike [6] adopted the same
approach. They applied the least squares method via Householder trans-
formation for fitting of the autoregressive model of each block. On
the other hand Ozaki and Tong solved Yule-Walker equation. It seems
to us that Kitagawa and Akaike’s procedure is more powerful and more
manipulable than Ozaki and Tong’s. In these two procedures informa-
tion which is contained in the previous blocks cannot be used so effec-
tively. A block and its preceding block are considered simultaneously
to check homogeneity of data in these procedures. We have to say
reverently that these approaches waste information about the temporal
development of process. Even if parameters are assumed to be con-
stant in a subinterval, they had better be estimated by using not only
data contained in the subinterval in which these parameters are defined
but also data contained in the former subintervals. If the system
changes abruptly at a point, the point should be found automatically
the aid of the appropriate statistical model itself. It seems not to be
natural that autoregressive coefficients change suddenly at discrete
points which are determined artificially.

Kitagawa and Akaike [7] proposed a Bayesian procedure for the
fitting of a locally stationary model. In their procedure information
of the previous blocks are utilized effectively in estimating autoregres-
sive coefficients of the present block.

Rao [14] expanded a method of weighted least square to estimate
autoregressive coefficients which change with time. We are sorry to
say that his ideas is not so bad but his method cannot be adapted to
the practical problems for lack of the rule to choose weights.

Kitagawa [8] took approach to nonstationary processes by fitting
an autoregressive type model with time-varying coefficients to those
processes. He considered a stochastically perturbed difference equation
constraint. The k-th order difference of the successive autoregressive
coefficients behaves like a random walk in his model. The order of the
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autoregression and the order of linear difference coefficient are deter-
mined by the minimum AIC procedure. His procedure is useful and
computationally efficient. It, however, seems to us that for the prac-
tical usage autoregressive coefficients may be kept constant in a block
(subinterval), supposing that we make use of information contained in
data of the preceding blocks as effectively as we can in order to esti-
mate parameters of autoregressive model of the present block and that
the number of data contained in each block is put to be as small as
possible. Certainly it seems more natural to consider that the param-
eters change at each point than to consider that they are constant in
each subinterval. But in order to cut down computing time, we as-
sume parameters are constant in each subinterval in our model of this
paper to our regret.

We propose a new model to analyse nonstationary process. In our
model a set of data is divided into some blocks with the same length.
We put a constraint on the autoregressive coefficients of the successive
blocks. Our constraint is concerned with the smoothness of the tem-
poral change of power spectrum as shown in the next section. The
smoothness parameters, which is called a hyper parameter, is deter-
mined by the minimum ABIC (Akaike Bayesian Infomation Criterion)
procedure which is attributed to Akaike [2]. Akaike [1] took almost
the same approach. He considered constraints concerned with the
smoothness of the spectrum in time and frequency domain, the stabil-
ity of the initial estimate of the spectrum and the mean and the
smoothness of the mean value. The order of autoregression is put to
be constant. These constraints keep the shape of estimated power spec-
trum density smooth. Namely unnecessary peaks don’t appear owing
to constraints in his procedure. On the other hand in our procedure
the order of autoregression, which is concerned with the number of
hyper parameters as shown later, is determined by the minimum ABIC
procedure and so this procedure prevents the order from becoming un-
necessarily large.

In Section 2 our model is defined and the likelihood of our model
is introduced. In Section 3 our computational scheme is explained. In
Section 4 numerical examples are given. Section 5 is devoted to con-
cluding remarks.

2. A Bayesian model and the likelihood of the model

Given a set of data {x(1), #(2),---, (N)}, we divide this into P
blocks. The length of each block is K and the order of the autore-
gressive model, which is fitted to each block of data, is put to be M.
P, K and M must be chosen under the condition N=Px K+M. Data
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are renumbered as follows for convenience.
(1) y(—M+i)=2(N—Px*x K—M+1), 1=1,2,---,Px K+ M.

Namely the p-th block (p=1, 2,- - -, P) includes data y((p—1)K+1), y((p—
DK+2),---, y(pK). The 0-th block is the set of data {y(—M+1), y(—M
+2),---,9(0)}. Here we note that K must be equal to or larger than
M+1+4a in our computer program whose source codes are presented
in TIMSAC-84 (Akaike et al. [3]). If the mean value of the data can
be put zero then « is put to be 0. Otherwise « is put to be 1. We
expand our procedure on the assumption that the mean value of the
process is not zero here after. We note that our procedure can be
adapted to the process of which the mean value is zero by minor change.

The following autoregressive model is fitted to the p-th block of
data (p=1, 2,---, P),

(2)  YO)=3 e myi—m)+a,0)+()
i=(p—DEK+1, (p—DK+2,- K

where ¢(i) is a Gaussian white noise with mean 0 and variance . We
put a constraint on the temporal change of autoregressive coefficients by
assuming that one-step ahead prediction given by autoregressive coef-
ficients of the present block and that given by those of the preceding
block are approximately equal. In other words the change of predic-
tion values is penalized. It is assumed that the first order difference
between two predictions behaves like a Gaussian white noise with mean
0 and variance ¢*/%®. The fact that power spectrum can be calculated
by using autoregressive coefficients leads us to consider that penalizing
the temporal change of autoregressive coefficients is equivalent to penal-
izing the temporal change of spectrum in the result. Namely it seems
to us that we indirectly put a constraint on the smoothness of the tem-
poral change of spectrum. Our constraint is described as the following.

(3)  efp, D=3 (@pu(m)—a,(m)Y(i—m)+a,.(0)~a,0)
Bo(p, i)=0, Be(p, )e(p, #)=(0"/7)3dic

The parameter 5 controls the smoothness and is called a hyper param-
eter according to Akaike [1] in this article. It is noted that the larger
» becomes, the stronger constraint becomes.

The likelihood of our Bayesian model is deribed as follows. It is to
be noted that the definition of the likelihood of Bayesian model is attri-
buted to Akaike [1]. The data distribution of our model is given by

(4) fla, 0")=(2rs")""%" exp (— SSK/24") ,
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where the definition of SSR is given by

Y, a, 77
Y2 O a, Y:
SSR= : R P
Y:lar Yr
Here | | denotes the Euclidean norm and matrix Y, and column vec-
tor y, and a, are defined as follows.
1 y((p—1K)  y(—1HK-1) - - - y(p—1DK+1—-M)
1 y(p—1E+1) y(p—DK) - - - y(p—1DK+2—-M)
Yp= ¢ . . .
1 y(K-1) Y(PK—2) -+ - Y(PK—M)
y(p—1K+1) a,(0)
Y(p—1)K+2) a,(1)
yp= : ap__: .
Y(pK) a, (M)

In the case the mean value of process is zero, the first column of Y,
and the first component of a, are not necessary. The prior distribu-
tion for a, is given by
( 6 ) g(aly’ 0.2’ 1]2)=(2n.o.2/02)—(P—1)(H+a)/2

X {det (Y/Y))- - -det (Y7_,Yr_)}'*

X exp (—»* CON/24%

where CON is defined by

Y a Yia, ||}
%, % ||a] |0

CON= ’ : e
—Yry Yeo]lLar 0
The estimates of autoregressive coefficients, a,(m) (m=0,1,---, M, p=
2,--+, P) and the estimate of ¢, * are obtained by maximizing f(y|a,

)g(a|y, ¢!, n*) with »* and a, fixed. The estimates of autoregressive
coefficients of the first block &,(m) (m=0, 1,---, M), which are regarded
as hyper parameters, are obtained by searching for the maximum of
the likelihood of our Bayesian model.
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(8) Uas, &, 7)=| 11 dansla, Motaly, o, 7).

The straightforward calculation leads to the following result.

(9) Ua, o*, nt)=(2na?)~PE/(5) P - +o L2
x{det (Y{Y))- - -det (Y5, Y, )"
x{det (Z'Z)}"* exp (—v(ay, 7)/20*)

X exp (—i (y(i)— ﬁ al(m)y(i—m)—a1(0)>2 /202>

where
(10)
[ Y, ] a, i Y
Y, O a, Ys
. Z . — .
YP aAP yP
Z = ’U(al, 7]) =
7)Yl O nYa,
—7Y, 7Y, 0
L —nYp1 7Yp4 ] L 0
It is noted that G, is the solution of the equation
(11) A+ Ya=Y!/(y+7'Y:a5) *
The estimate of ¢® is derived easily.
(12) a*=V|PK
where V=v(a,, 5) is
F Y a7 [w TP
Y, O a, Y

Y ap Yr
—7Y: 7Y, 0
-2, 2%, () 0

(13) V=

_7}YP-1 7)YP—1_ 0
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Now we must determine the appropriate smoothness parameter 7
and the number of autoregressive coefficients of the first block. To do
so we calculate ABIC (Akaike Bayesian Information Criterion) defined
by Akaike [2].

ABIC= —2log (maximum likelihood of the Bayesian model)
+2(the number of estimated hyper parameters).

In our model the likelihood of the Bayesian model l(a,, ¢% %) is describ-
ed by a,0), a,(1),- - -, a,(M), ¢* and 7* (if a=0 then a,(0) is not included).
But independent variables of l(a;, ¢°, ) are a, and 7* as long as the
maximum likelihood estimate is concerned, since a* is expressed by a,
and #*. In our model a, and »* are regarded as hyper parameters.
Namely the number of estimated hyper parameters is M+a+1. Here
“1” is common to all models and so we ignore this term. Then ABIC
of our model is given by

(14) ABIC (M, 5)=PK(In 2z+1—In (PK)+In V)—(P—1)(M+a) In ¢
—In (det (Y7 Y))- - -det (Y5, Yr_y)
+1n (det (Z2'2))+2(M+a) .

The hyper parameter 7 is chosen by searching for minimum value of
ABIC with the aid of a nonlinear optimization method. In our com-
puter program (Akaike et al. [3]) grid search of 5 is done to perform
an approximate nonlinear optimization with less computational time.

The number of autoregressive coefficients of the first block, which
are hyper parameters of our model, is determined so that the value of
ABIC becomes minimum. In Section 1 we stated that the order of
autoregression is determined by the minimum ABIC procedure. But
it is more accurate to phrase that the number of hyper parameters
(@4(0), a,(1),- - -, ay(M)) is determined by the minimum ABIC procedure.
It is noted that M is the order of autoregressive models in all blocks
as well as in the first block. And so to determine the order of auto-
regressions can be regarded as paraphrase of to determine the num-
ber of hyper parameters.

3. Computational scheme and power spectrum

The minimum ABIC procedure for the fitting of our nonstationary
time series model is summarized as follows.
(1) Given a set of data {x(1), #(2),- -, 2(N)}, set the upper limit M.,
of the order of autoregression and choose the length of a block K and
the number of blocks P. It is noted that the conditions N=PK+M,_,,
and K=M_,.+2 must be satisfied.
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(1) the 0-th block : {y(—Muex+1), Y(—Mppx+2),- - -, %(0)}

the p-th block: {y((p—1)K+1), y(p—1)K+2),- - -, y(pK)}
»=12,..-, P
where
Y(— Moz +1)=0(N— PK— M0 +1), 1=1,2,---, PK+M,,, .
(2) (i) Construct K * (M,.+2) matrix for p=1, 2,--., P

1 y((p—DK) - - - Y(@—DK+1-M..,) y((p—1)K+1)

1 y(»—DEK+1) - - - y(0—DK+2—Mu) ¥(p—1)K+2)
Yp= . . . .

1 y@K—1) - - - y0K—Mou) Y(pK)

(ii) By applying the Householder transformation the matrix Y, is
reduced to an upper triangular matrix R,

( /rg’) ¢t "'g??xm.x.n, rg?zlmax+l
o o . R M) 75(Mas)
? O rgxl;x+l,lfmax+l rgzl,t)nax-f'l,llmax+2 0 0
rgzl’iax+2.ﬂmnx+3
0 0 )

(iii) Calculate det (Y,Y,) for p=1,2,..., P—1 and for each M<
Mo

det (¥; Y,)=1] ().
=1
(iv) Sum of squared residuals of each block (p=1, 2,--., P)is given
by
Mmax+2
SSR (p)___ ‘ Z (’rgf,.gfmax-i-z)z .

=M+3

(3) Set the matrix
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0

] —7Ro (M) 7Ro (M)

" Ry(M) ]
R(M) 0
0 .
Ro(M)
2Ry(M)
—7R(M)  nR(M)
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and reduce this matrix to the upper triangular matrix @ via the House-

holder transformation.

ponents of @, ¢, (2=1,--., (P—1)(M+1)),

det (2'Z)=

(4) Construct the matrix

[ Ry(M)
Ry(M)

0

- ﬂRz(M ) ﬂRz(M )

0

—1Ry(M) 7R{(M)

i —2Re(M) 7R(M) 0

(P-1)(M+1)

1T

i=1

2
qii «

r(M) |
ry(M)

Re(M) 14(M)
0

0 °

We can derive det (Z2’'Z) by using diagonal com-

and reduce this matrix to the upper triangular matrix by applying the

Householder transformation

[Su(M)  S.(M)

Su(M)  Su(M)

0

where S,(M) (¢=1,2,.--, P) are upper triangular matrices.

0

Se-1,p-(M)  Sp_1,(M)
Sp, (M)

s(M) ]
8,(M)

sri(M)
sP(M )

8p41(M) _

Autore-
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gressive coefficients are given by
ap=Spp(M)"'8x(M) ,
Gy=S,(m) (8, (M) —Spps(M)dpss) ,  D=P—1,-++,1.

The maximum likelihood estimate of the innovation variance ¢* is given
by

5= (3} SSR (9)+ 3. (M) [PK .

(5) Calculate ABIC (M, 5) (M=0, 1,.--, M,,) for several values of the
hyper parameter 5 and select the number of the autoregressive coef-
ficients of the first interval M and the hyper parameter 5 so that
ABIC (M, ) has the minimum value.

(6) The power spectrum of the p-th block is given by

A
”2

a,(9)= 7 T
1— 3> a,(m) exp (—12rgm)

4. Numerical examples

Our procedure for fitting a Bayesian autoregressive model to non-
stationary process was applied to two artificially generated nonstation-
ary time-seriesed data and one time-seriesed clinical data. The artificial
data is generated by the following equation.

o(n)+3) ai, n)e(n—i)=em)  n=—209,---, —1,0,1,--, 501
i=1

where ¢(n)~N(0, 1) and autoregressive coefficients a(i, n) are determined
so that characteristic equation

s"+a(l, n)s" '+ .- - +a(m—1, n)s+a(m, n)=0
has roots given by
model 1 (m=4): 0.83 exp (+w(n)¥—1), 0.88 exp (wy(n)¥—1)
model 2 (m—4): 0.83 exp (=wy(n)v—1), 0.88 exp (w(n)v¥—1).
Here
W) =5r/9+(x/6) sin (T=(n —100)/2700)
wy(m) =7/6+(x/12) sin (Tx(n —100)/5400)
wy(1)=57/9+(x/6) sin (x(n—100)/135)
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wy(n)=2r/9+ (x/18) sin (x(n—100)/270) .

These models are the same models that Kitagawa [8] proposed in his
paper.

The sets of data {x(—9),---, x(—1), 2(0), z(1),- - -, 2(500)} of the
above two models are used. The number of blocks, the number of
data in each block and the maximum value of the order of autoregres-
sion were put to be 50, 10 and 9, respectively. (“The length of each
block ” must be equal to or larger than “the maximum order of auto-
regression+1” in the case the mean value is zero.) The hyper param-

0.00 0.20 0.40
FREQ

(b)

Fig. 1. Artificially generated changing spectrum.
(a) model 1 (b) model 2
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eter 5 is determined by searching for minimum value of ABIC over a
set of . The change of the theoretical spectrum is illustrated in Fig.
1 and the change of the estimated spectrum is illustrated in Fig. 2.
The model whose order of autoregression is 4 was the minimum ABIC
model for the first series and the model of which order of autoregres-
sion is 4 was the minimum ABIC’s for the second one. Namely our
procedure could select true order for these examples. We note that
our procedure always selected true order for 50 time-seriesed data gen-
erated by using the same coefficients with model 1. It seems that our

0.00  0.20 0.40
FREQ

(b)
Fig. 2. Estimated changing spectrum obtained with
(a) M=4, n=4.2 for model 1,
(b) M=4, »=2.2 for model 2.
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Fig. 3. Time-seriesed clinical data (GPT).
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Fig. 4. Estimated changing spectrum for log-transformed GPT data.
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procedure can select the reasonable model.

Our procedure was applied to time-seriesed clinical data. Original
data is illustrated in Fig. 3 and the change of the estimated spectrum
is illustrated in Fig.4. It is noted that we modified original data by
applying log transformation and fitted our model to the modified data.
Whole data (the number of data is 66) was divided into 16 blocks. The
length of each block was put to be 4 and the maximum order of auto-
regression was put to be 2. (“The length of each block” must be
equal to or larger than “the maximum value of autoregression+2” in
the case the mean value is not zero.) In this case the variance of
data suddenly changes about the 40th month. We, however, assume
that the variance is constant and so we must weaken constraint by
using the small value of the hyper parameter in order to alleviate the
influence of the change of the variance. The value of the hyper param-
eter used was 5=>5. Our procedure gave the result that the shape of
spectrum changes at the 13th span. This result seems to be reason-
able, because this data shows that hepatic disorder state alters about
the 40th month from hepatitis to cirrhosis of the liver.

5. Concluding remarks

A Bayestian procedure to estimate nonstationary power spectral
density is proposed. The number of autoregressive coefficients of the
first block a, and the value of the hyper parameter » which is related
with the strength of constraint on time-varying autoregressive coeffi-
cients are determined with the aid of the minimum ABIC procedure.
In Section 2 it was noted that our constraint is concerned with the
smoothness of one-step ahead prediction. Considering that power spec-
trum of each block is derived by using estimated autoregressive coeffi-
cients, we can say that our constraint is concerned with the smooth-
ness of spectral density in time domain. Numerical examples show that
our procedure is sufficiently practicable.

Extension of our procedure to multi-variate time-seriesed data is
discussed in the separate paper. The case where the variance of data
d® is not constant will be also discussed in near future.
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