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Summary

The Bayesian estimation problem for the parameter # of an ex-
ponential probability distribution is considered, when it is assumed that
0 has a natural conjugate prior density and a loss-function depending
on the squared error is used. It is shown that, with probability one,
the posterior density of the Bayesian—centered and scaled parameter
converges pointwise to the normal probability density. The weak con-
vergence of the posterior distributions to the normal distribution fol-
lows directly. Both correct and incorrect models are studied and the
asymptotic normality is stated respectively.

1. Introduction

The asymptotic behaviour of the posterior distribution for exponen-
tial models has been discussed widely in the literature. Le Cam [5],
Berk [4] and other authors have studied the consistency and the asymp-
totic normality of the maximum likelihood estimate when the model
being used actually governs the data. Berk [2], [3] has established the
conditions under which a sequence of posterior distributions converges
weakly to a degenerate distribution, even when the model is incorrect.
Crain and Morgan [6] have shown that the posterior probability density
of the centered and scaled parameter, using the maximum likelihood
estimation, tends pointwise to the normal density with probability one,
when the model is correct.

In this paper we study the limiting behaviour of the scaled and
centered parameter with respect to the Bayesian estimation, for the
exponential-type distributions.

In [1] it is shown that for a natural conjugate prior distribution,
the loss equal to the squared error, multiplied by an appropriate fac-
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tor, leads to tractible expressions for the Bayesian estimator and the
posterior expected loss.

In Section 2 we list some basic properties of the considered ex-
ponential models and we briefly review the construction of the Bayesian

estimation #,. In Section 3 we suppose that the exponential model
actually governs the data (the model is correct) and we show that,
with probability one, the random variable v n (0—5,,) converges weakly
to the normal distribution with the mean zero and the variance related
to the Fisher information. In Section 4 we consider the case of an
incorrect model. Using Berk’s result concerning the weak convergence
of a sequence of posterior distributions to a degenerate distribution,
we establish the asymptotic normality of the variable x/W(ﬁ—é,,) in
this case too.

2. Exponential distributions . Construction of the Bayesian estimation

Let us consider a measurable space (2, K) and a random variable
f, which takes values in (¥, $), where XCR and B is the o-field of
the borelian subsets of . We suppose that the distribution function
of f, F,, depends on the parameter . We shall also denote by F, the
joint distribution of a sequence of independent, identically distributed
(F,) random variables fi, f3, -+

We suppose that F, is an exponential distribution, whose prob-
ability density with respect to a o-finite measure 4 on X belongs to
the family

P={p(x|6)=exp [a(0)b(x)—c(a(6))], x€ X, 66},
where
6= {0 ¢R S €D [A(Ob(z) —e(a(O))ldp(z) < oo} :

We notice that

9= {o ¢ R|e(a(0))=In S - €XD [a(O)D(2)]dpu(z) < oo} .

Assumptions on the exponential model :
A.l. Int@+0 (@ has nonempty interior).
A.2. 60— a(f) is a diffeomorfism between @ and a(8).
A.8. p is not supported on a flat.

Properties of the exponential model :

We list here some basic properties of the exponential model, which
are to be found, in their general form, in Berk [4].
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P.1. 6 is a convex subset of R.
6,={0 € O|E,[|b(f)]]<co} is a convex set too, and Int &, (here
E, denotes the expectation with respect to F,)

P.2. c(a(9)) is convex and lower semi-continuous on R, continuous and
infinitely differentiable on Int 8.

P3. 6—c'(a(d)) is 1—1 on 6, and ¢"(a(d))>0 for 6 € Int 6.

Construction of the Bayesian estimation :

Following Shapiro’s and Wardrop’s method ([6]) for the construec-
tion of the Bayesian estimation of the mean parameter 4 of an one-
parameter exponential family, the estimation of E,[b(f)] for a general
exponential family has been constructed in [1].

For the here considered exponential model, we assume that ¢ has
a natural conjugate prior density

2(0) = —EXP [a(0)b(@) —Be(a(@)]
Se exp [a(6)b(a) — Be(a(0))1d0

where

(a0, B) € {(x, Y ER

Se exp [a(0)b(x) —ye(a(8))}do < oo} :

Let us consider f,, ..., f, independent, identically distributed ran-
dom variables, with the probability density »(x|6) ¢ &P.
Then the posterior density of 4, given (x,, ---, x,) is

exp {a(0) @)+ 3] b(@) | — (6+n)e(a(0)]
|, exp {a(0) e+ 31 ) | — 8-+ mpetato] o

We are interested in the estimation of ¢(6)=E,[b(f)]=c'(a(d)). Let
us consider the loss-function

L(8, 6)=L(g, §)=a'(0)[o(6)—] .

The minimum posterior expected loss

A(0)=

inf [, 2 @le0)—s11,0)0

is attained for

[, @ @pt0)(0)d0
Se a(O)0)d8

n —

Hence, ¢, is the solution of the equation
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|, #O@—c@omieds=0.

From the condition

J, 1 exp [a(6) (@) + 2 b(w) ) — (B+m)e(a(0)) || do=0,

we get

|, @@ (5@)+ 21 b)) — (B+m)(@(o) | (000 =0 .

Then the Bayesian estimation of ¢(6) is

b(@)+ 33 b(x)

Son(xl! ) wn)= 19+n

3. Asymptotic normality when the model is correct

Let us consider that the exponential model actually governs the
data. It means that the true, but unknown value of the parameter,
0y, lies in the interior of 8.

By the strong law of large numbers, ¢, — ¢(6,) F;—almost sure
for n — oo,

Let 6, be the solution of the equation ¢(@(6,))=¢.. Then 4, is the
Bayesian estimation of the parameter 4 and 4, — 6, F,—a.s. for n— oo.

It is well established ([5]) that the posterior distribution 4, becomes
degenerate at 6, for n — co, F,—a.s. Then, for any neighborhood V
of 6,, }‘1_.13 4,(V)=1 F,—as.

On the basis of these two facts, we establish the following result.

THEOREM 1. We assume that the considered exponential model is
correct, A.1.-A.3. are verified and 5n is the Bayesian estimation of 4.
Then, the random variable v n (0—5,,) converges in distribution for m—

o to the mormal distribution N(0, @ ));,,(a(a 5
0 0,

ProOOF. We consider the variable Z,=vn (0—9,,). The posterior
probability density of Z, is

> F,u—almost sure.

exp {a<.¢z7+é") [b@)+33 b(s0)| —(/9+n)c<a<7%—+5n>>}

3.1 g.@)= _
v |, exp fa(0) bla)+ 32 b | (8+m)eta(o))| o
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Let us denote

u:i.’ an_l_éb(xi),
n

i=1

n
uw)=au+0,)( 28 45,) — (1+-£ otau+d,)

Then q,(z) can be written as

(3.2) exp {n[&.(w) —£.(0)]} .
N Se exp {n[a(a) (%H’»..) — (1 +£->c(a(0)) — E,,(O)] } do

By the Taylor series expansion of &,(u) about u=0 we get &,.(u)—£&.(0)

:%u’-{-‘{.’(v), where v lies on the line segment between % and the

origin.
Then, the numerator of (3.2) becomes
exp {_z_fzf_ a"(v+6,) [ <£(:—) + 5,.> - <1 + %) c(a(v+ én))]
—%’(a'(v+é,,))2<1 +%)c"(a(v+é"))} :

Since 6, — 6, for n— oo F,-a.s., with probability one, the numera-
tor of (3.2) tends pointwise to

exp | — 2 (@ (0))e"(@(6) -

Now, by the consistency a posteriori, for any neighborhood V of 4,,
lim| 1,(0)d0=1 Fi-as.
14

n—co

Hence
1, eofofuo(H0L45) 1+ s
im =

= 48] (i £ o

Since é,,——»ﬂo for n— oo F,-a.s., for any positive 3, there exists
a neighborhood V of 6, such that

Vc{0)16—6.<3) or Vc{ul<d}.
Then
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. [, exp tnlg.0)— .0 du
lim lu <3 —1.
W Se exp {n[a(b‘) (—b—%)—ﬂ,.) - <1+%>c(a(0))—$,,(0)] } da

Then, the denominator of (3.2) has the same limiting behaviour as
the expression

3.3) exp {—%zz(a'(wré,,))2<1+%>c"(a(v+é,,))} dz.

S|z|<d'f17

Since the integrant in (3.3) tends pointwise to exp[-—-é—zz(a’(ﬁo))zx

c"(a(ﬁ,,))] F,-a.s. and is bounded above by the integrable function

exp < - % z2d> , where

d= inf [(@(0)e"@O)],

it follows from the Lebesgue dominated convergence theorem that the
denominator of (3.2) tends to

S exp [ — —;-z’(a’ (60))%c"” (a(ﬁo)):l dz .

Thus, the pesterior density g¢.(z) of the variable Z,=+n (0—9,,)
tends pointwise to the probability density N(0; 1/(a’(6,))*c"(a(6,))) Fo-
a.s.. The convergence in distribution follows immediately from Scheffé’s
theorem.

In this proof we have used the technique introduced by Crain and
Morgan [6].

4. Asymptotic normality when the model is incorrect
Let us consider the same exponential model
P= {p(x|0)=exp [a(0)b(x) —c(a(d))], x € X, 6¢c6},

where
8= {a ¢ R] e(a(6))=In S  €XD [a(O)b()]du(z) < o}

We assume that the real, unknown distribution of the random
variable f is F, not belonging to the family ?. In the following, F
will refer also to the joint distribution of the sequence of independent,
identically distributed random variables f,, f5, + - .
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We denote m,=E[b(f)], where the expectation is taken with re-
spect to the distribution F.
By the strong law of large numbers, the constructed Bayesian

<b(oz)+ﬁ1 b( f,)) converges to my for » — oo,
i=

. . A 1
estimation of ¢(6), ¢,=
@(0), ¢ o

F-a.s.
Let

1(0)=E[In p(f|0)]=a(@)ms—c(a(0)) and y*=sup7(f),

D={¢ € E|sup [a(0)6 —c(@()] <o} ,

H,={¢ < ||, exp (a(0)[b(@)+né]— (8+m)o(a(@)}do<oo]

Berk [3] has established the conditions under which a sequence of
posterior distributions converges weakly to a degenerate distribution.
For the considered exponential model, consistency a posteriori is given
in the next proposition, which follows from Berk’s result.

PROPOSITION. Let us assume that the expomential model satisfies
A.1.-A.3. and that the real probability distribution F verifies the follow-
wmg conditions :

B.1. b(x) belongs to the linear span of U (H,ND) with probability one.
B.2. E[b(f)]]1< .
B.3. mj belongs to the interior of U (H,N D).

Let 6* be the value at which y(0) attains its supremum: v(0*)=vr*.

Then, the posterior distribution A, converges weakly to the distribu-
tion degenerate at 6*.

For the considered model and the Bayesian estimation ¢, let y,=
sup [a(0)@,—c(a(6))]. Since ¢, — m; for m — oo, F-a.s., we get y,— r*
2]

for n — oo, F-a.s.
If ¢, belongs to Int D, let é,, be defined by the relation

= a(én)s’bn - c(a(én)) .

Then 5,,—» 0* for m — oo, F-a.s.
Using this fact and the consistency a posteriori, we establish the
asymptotic normality in the case of an incorrect model.

THEOREM 2. If the exponential model satisfies the assumptions A.1.—
A3. and the real distribution F satisfies the conditions B.1.-B.3., the

random variable x/W(ﬂ—é,,) converges in distribution to the mormal dis-
tribution N(0; 1/(a’(6%))c"(a(6*))) F-almost sure.
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We notice that the variance of the limiting normal distributions

depends on Fisher’s information in both cases.
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