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Summary

A multivariate latent scale linear model is defined for multivariate
ordered categorical responses and inference procedures based on the
weighted least squares method are developed. Several applications of
the model are suggested and illustrated through an analysis of real
data. Asymptotic properties of the weighted least squares method are
examined and some consequences of misspecification of the model are
also discussed.

1. Introduction

In analysis of several multivariate samples with continuous vari-
ables, usually linear models for location vectors are adopted, e.g. Ander-
son [5], Rao [25], Gnanadesikan [14]. For multivariate quantal or cate-
gorical observations, are used log-linear models, e.g. Plackett [24],
Bishop, Fienberg and Holland [9], or linear models for functions of
probabilities proposed by Grizzle, Starmer and Koch [19], and Koch et
al. [21]. For ordered categorical responses, however, models for multi-
variate analysis have been developed mainly for analysis of associations,
Goodman [15]-[17], Wahrendorf [29], Clogg [13], Agresti [1], [2], and
others. In the present paper, we shall consider a latent scale linear
model for factorial analysis of multivariate samples with ordered cate-
gorical responses. The model, which was proposed by Uesaka and
Asano [27], is a natural extension of the multivariate logit model for
multivariate quantal responses by Grizzle [18], and of the latent scale
linear model for the univariate ordered categorical responses considered
by Uesaka and Asano [28]. A similar approach has appeared in factor
analysis of multivariate dichotomous variables, Christoffersson [12],
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Muthen [22], Muthen and Christoffersson [23], where multivariate nor-
mality is assumed for the latent variables.

In Section 2, a multivariate latent scale linear model is defined.
In Section 3, a method of parameter estimation is presented, and as-
sessing validity of the model and testing linear hypotheses are discus-
sed in Section 4. In Section 5, some applications are illustrated. Then
in Section 6, we consider some consequences of misspecification of the
model. In Section 7, an illustrative example of analysis of practical
data is presented. The final section gives further discussion.

2. Multivariate latent scale linear model

Let Y=(Y,,---, Yx) be a K-variate observation vector, where Y, is
measured as one of ¢, ordered categories, k=1,..., K. Without loss
of generality, the u-th category is denoted by an integer u, u=1,..-,
¢, k=1,--., K. We assume that each variable Y, is a manifestation
of a latent response or a latent trait. Thus we consider a K-variate
continuous latent random vector Z=(Z,,- .-, Zx)', and assume that

(1) Yk:u: if Tm—1§Zk<Tku9 u=1,---, (.

where 7= —o00 <7<+ <7y 1<7y,=+0o and the z,,’s are unknown
constants.

Consider I random samples {Y,,, a=1,---, n;} and the corresponding
latent vectors {Z.., a=1,---, n;}, for ¢=1,---,I. Assume that Z,, a=
1,-.., m; are independently and identically distributed with c.d.f. Fi(2),
t=1,-..,I. The present model is that

(2) Ft(z)zF(z_‘ui)! 'l:=1,"‘,I,

where p,=(py,- -+, pix), 1=1,---, I are unknown location vectors and
F(z) is a K-variate continuous distribution function. Further we define
a linear model for location parameters as

(3) yiinﬂl i=1""ny

where X,=[x/,---, xg]’, t=1,--., I are given Kxp full rank matrices
and B is an unknown p-dimensional parameter vector. The basic model
defined by (2) and (3) is a multivariate linear model for several multi-
variate samples on continuous random variables. This suggests that
factorial effects can be evaluated by linear hypotheses for the location
vectors, as is the case of MANOVA. In what follows, we shall develop
a methods of analysis of factorial effects for an Ix(e;X---Xex) con-
tingency table defined by {Y..}. The observed frequency table has a
product multinomial distribution whose multinomial probabilities are
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determined by the Fi(z)’s. Since the latent variables may be correlated
in an unknown form, the latent distribution F'(z) and consequently the
multinomial probabilities cannot be specified in a parametric form, and
usual method such as maximum likelihood cannot be applied. Though,
since location parameters can be estimated from each variable sepa-
rately, it is sufficient for statistical inference that the only K univari-
ate marginal distributions of F(z) are specified.

In what follows, we assume that F'(2) is a continuous distribution
function having the whole K-dimensional Euclidean space as the sup-
port. Further F(z) is assumed to have bounded second order partial de-
rivatives. Let the univariate marginal cumulative distributions (c.d.f.)
and probability density functions (p.d.f.) of the F(z) be Fp,(2) and
Sfui(?), respectively, k=1,-.-, K, and let q,, be the cumulative prob-
ability up to the wu-th category of the k-th variable of the i-th popu-
lation, u=1,..., ¢, k=1,-.-, K, ©=1,---,I. Then from (1) and (2) we
have

(Mp) F’[;]l(thu)ZTku—ﬂtk ’
u=1,--+,¢—1, k=1,---, K and 1=1,---,1I.

This model implies (i) homogeneity of marginal distributions over the
I populations except for location parameters, and (ii) homegeneity of
category boundaries over the I populations. The model (3) is, under
the assumption (M,), again written as

(ML) /.t;,‘:xikﬁ, k=1,"‘,Kand 7:=1,"', I-

Thus our model is re-expressed as a linear model for functions of uni-
variate marginal cumulative probabilities.

As is easily seen from (M,) some constraints must be imposed on
the {r,,} and B to identify parameters. Usually one of the following
restrictions is adopted ;

Cl. Tkl+"'+7-'kck_1=0, k:l,-..,K’
C2. it +u=0  or  wmpt---+np=0.

Let ¢ be ¢,+---+cx and denote by = the vector of free 7’s, and let ¢
be the number of free z’s. Then for Cl, ¢g=c¢—2K, and for C2, ¢q=
c—K.

3. Parameter estimation and testing linear hypotheses

The expressions (Mp) and (M.) for the multivariate latent scale
linear model show that a method of weighted least squares with em-
pirical weights, Grizzle, Starmer and Koch [19] and Bhapkar [9], can



194 HIROYUKI UESAKA AND CHOOICHIRO ASANO

be effectively applied to parameter estimation.

Let N, be the number of observations among {Y.:, a=1,:---,n;}
which take the values being equal to or less than u, and let @, be a
positive consistent estimate of g, such that

(4) Qi — Niwu/i=0,(n;'?) ,
w=1l,-+-,¢, k=1,--, K, t=1,-.., 1.

Let

(5) Ziku:-F,[;]!(thu) ’
for u=1,-.-,¢.—1, k=1,---, K, 1=1,---,1I.

Then we have

(6) =T~ Xp B+ +0,(n7 %) ,
where
Qun— it
7) ey = — 2t Jiiew
( ‘k _]“|:1¢](1'7‘[;]1 (qiku))

Hereafter, we use the symbol Z to denote a sample equivalent deviate
instead of a latent variable. Let n=n,4---4+mn, and assume that

(8) limn,/n=2,>0, i=1,---,1.
Let
(9) Do =Fx} (Qir) »

u=1,--+,¢—1, k=1,---, K, 1=1,.--,1,
D=(Tur** s Yikeg-11°* s Nrxeg-1) 5
(10) Z=(Zyy,-+-, ZLKcK—I! ) szcK-x)' ’
(11) e=(Cuss* * " Cikeg—11" " *» Crxeg-1) -

Then as » tends to infinity, ¥ ne has an asymptotic multivariate nor-
mal distribution with mean vector 0 and variance-covariance matrix

(12) 2 =Diag [Z\/As,-++, Z4/2]] ,

where X, is a symmetric matrix of order c—K with elements
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i, xm,u0 — Qiruimov

Sor(F3 Q) Frmi(Fimni(@imo)) ’
for 1su<c,—1, 12v=<¢,—1, 1Z5k+#m=<K,

(13) at,km,uv = "
Qi — QiiuTixo

o (F3 (Qun)) S raf(F 3 (Qino) ’
for usv, k=m=1,.-., K,

where ¢; ;m4 1S @ bivariate cumulative probability of the joint distribu-
tion of Y, and Y,, at the i-th population. Let V and V;, :=1,---, I be
consistent estimates of ¥ and J,, i=1,.--, I, respectively, obtained by
replacing the q;,’s and ¢, ;n.,’s in the equation (18) by their sample
values Q,;,’s and Q; 1 .,’S, Where @, ;... iS a positive estimate of ¢, imuv
such that

(14) Qt,lcm,uv - q¢,km,uu = p(n— l/2) M

The weighted least squares (WLS) estimator of (z/, 8')’ is the solution
to minimization problem of the weighted sum of squares

(15) Sz, B)=3im(2-W( 3 ) Vi (2w ( 3 ))
where Z,=(Zy,* +*) Zigeg-1)'s 1=1,--+, I, and

—1c1—1®xu
(16) W,=|A : } i=1,-+-,1,

—ch—'1®xtx
where A is the coefficient matrix of = and 1. _, is the ¢,—1 dimensional
column vector of ones. Let W=[W/,.---, W/, G=[W'V'W]'and I'=
[W'Z-'W]'. Then the WLS estimate of (z/, '), denoted by (¢, ,é’)’, is
given by
an [?
B
and the estimated variance-covariance matrix is given by G. When

the conditions (M,) and (M,) simultaneously hold, v%[(#, BY—(', Y]
has the asymptotic multivariate normal distribution with mean vector
0 and the variance-covariance matrix I.

] —GW'V-Z,

4. Assessing validity of the model and testing linear hypotheses

4.1. Under the null hypothesis
The validity of the model can be checked by residual sum of squares
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S(z, ﬁ). When the model (M,) is true, this statistic has an asymptotic
chi-square distribution with Ix(¢—K)—(p+q) degrees of freedom. If
this statistic is large enough to doubt the validity of the model (M}),

S(z, ﬁ) may be decomposed into two components like S(%, ﬁ):S(i-, A+
S(ﬁlﬁ), where S(%, ) is the weighted sum of squares of residuals un-
der the model (M)), and S(,é[[z) is the increment of residual sum of

squares due to additional constraints imposed by (M.). This sum of
squares is equal to the weighted sum of squares for the linear model

18 [i]z[I 0”:7]—{—[‘3’], with weights nG™,

(18) a7l xllglTle, g

where e: and e, are error vectors associated with # and f, respectively,
and X=[X/,---, X/). When (M,) is true S(#, g#) has an asymptotic chi-
square distribution with (I—1)(¢c—2K) degrees of freedom. Further when
the model (M,) is true S(ﬁl #) has an asymptotic chi-square distribution
with IK—p or IK—K—p degrees of freedom according to the identifi-
ability condition C1 or C2. Further examination of validity of the
model can be done by a close inspection of standardized residuals given by

V1 (Zi— Tt fliz)
19 R,.= Ai iku ku T Mk ,
(19) “ va 1,1k, 0 — Wit G i,

u=1,.-.,¢-1, k=1,---, K, 1=1,---, 1,

where w,,, is the iku-th row vector of W.

Consider a linear hypothesis H, that HB=0, where H is an rXp
full rank matrix. The test of H, against an alternative H; that HB+0
can be made on the basis of a chi-squared statistic

(20) X*=(HBYHV(A)H) (Hp) ,

where V() is an estimated variance-covariance matrix of B and is given
by the last pxp submatrix of G. When the null hypothesis H; is true,
X* has asymptotically the chi-square distribution with r degrees of free-

dom. It should be pointed out that X? of (20) is equal to S(ﬁ]ﬂ, H),
the difference of residual sum of squares under the hypothesis H, and
under the model (M,).

4.2. Asymptotic properties under Pitman type alternatives

Assume that the conditions (M),) and (M_) simultaneously hold and
consider the asymptotic power for a Pitman type sequence of alterna-
tives. Let the location vector of the ¢-th population for the sample of
size n; be

(21) ﬂi(ﬂ)=Xfﬁ(1l) ’ i=1) D) I:
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and let

(22) Bw=Bw+&IVn ,
where B, and & are constant p-vectors such that
(23) HB,=0 and HE+O0.

Denote the parent univariate and bivariate marginal cumulative prob-
abilities of the i-th sample, for i=1,---, I, be {gR} and {¢{2n ..}, TE-
spectively, and let their limiting values for infinitely large n be {¢{%
and {g®. ..}, respectively. Then since F(z) has bounded and continuous
second order partial derivatives, we have

(24) GR=GRAOO™) o= m it O ) .

Applying a convergence theorem, e.g. Rao [26], p. 385, we have the
following theorem.

THEOREM 1. When the sample sizes tend to imfinity, the WLS esti-
mate (&), ,é,’.)’ 18 asymptotically multivariate normal, i.e.,

—( t,—t \ L -
T =. N0, [W'ZO-'W]Y),
V(g )N I
where I is the matrixz defined by (18) with replacing {qi.} and {@; im0}
by (g2} and {q%mu), respectively, and L stands for a comvergence in
law.

COROLLARY 1. The chi-square test statistic defined by (20) has asymp-
totically a moncentral chi-square distribution with r degrees of freedom
and noncentrality parameter

(29) 7'=(HgYHW'ZO"'W)H'|"(H§) .

5. lllustrations for applications

Later we shall give an analysis of real data. At present we illust-
rate a few applications.
1. Analysis of one-way layout and testing homogeneity of several sam-
ples. Suppose we wish to test that the I populations are homogeneous.
In our formulation, this means that we test the null hypothesis

HO: pl’:"'=”1

against the alternative H, that at least one of the equalities does not
hold. It should be noted that under the null hypothesis, model (Mp)
holds for any univariate continuous c.d.f. G(z), but the power of the
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test may decrease. This will be discussed in Section 6.

2. TFactorial analysis in a two-way layout. For a two-way layout ex-
periment with factors A and B, we wish to test whether there exists
no interaction between A and B, whether there exists no main effect
of A or B. Let the linear hypotheses corresponding to these state-
ments be H,,;f=0, H,=0 and H;B=0, respectively. The test sta-
tistics are computed from the equation (20) by replacing the matrix
H with H,.;, H, and Hj, respectively. Then we can construct a
MANOVA table. Note that these chi-squared statistics are not mutually
independent, though the H,,;, H, and H,; are mutually orthogonal.
An example of analysis of a real data of this form will be given in
Section 7.

3. Analysis of repeated measures experiments. Suppose the K re-
sponse variables are obtained on the same variable with ¢ ordered cate-
gories under K different conditions. It may be reasonable to assume
that the relationship between the observed category and the latent
variable may be identical over the K conditions and that the K mar-
ginal distributions Fj(2), k=1,---, K are identical. Thus the const-
raints

(26) Tlu:TZu:"':_—:TKu.’ u=1,---,c—1,
and
(27) Fuy(2)=++-=Fxo2)

are introduced. Whole procedure of analysis is the same as described
in the previous sections except for the restrictions defined by the equa-
tions (26) and (27).

4. Multivariate logit analysis or approximate analysis of multivariate
probit. When all variables are quantal and the K univariate variables
are assumed to have the logistic distributions, our method agrees with
the multivariate logit analysis proposed by Grizzle [18]. If we take
F4(2) to be the standard normal distribution, our model gives an appox-
imate solution for multivariate probit model.

5. Analysis of a randomized block experiment. Suppose that we have
n subjects and K treatments are randomly allocated to K homogeneous
experimental units on every subject. Then a response variable with ¢
ordered categories is observed for every treatment. The observations
are arranged into a ¢xXeX - Xc table. It is assumed that the latent
response vectors Z,, e=1,---,n are independently and identically dis-
tributed in a K variate continuous c.d.f. F(z) which is assumed to be
symmetric with respect to the K arguments. The interest here is to
evaluate whether the K treatments have the same effect or not. Setting
I to be 1, the same model as that for the repeated measures experi-
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ments described above can be applied. The linear hypothesis is that

}Ioj Ill:"':/‘K'

6. Validity and efficiency of a specific distributional model

Suppose that the multivariate latent scale linear model (M;) holds
for a latent distribution F'(z). The true latent distribution is, however,
not known, and one should assume the latent marginal distributions to
be, say, Gu,(2), k=1,---, K. Thus it is important to know some con-
sequences of misspecification of the distributional model. Here we shall
investigate this problem.

6.1. General
Let
ﬂ?;u:G[_ka(th) ’ Zitu':G[_kl](Quu) ’
(28)
e;;u=M, u=1,--,¢,—1, k=1,--+, K, i=1,---, I,
I i)
where g.,(2) is the p.d.f. of Gyy(2), k=1,--., K. Further let
(29) Z*=(Z1T1, ] Zl’;(cK—ly Tty Z;‘;(L‘K—l), )
and
(30) e*z(eﬁu Tty eichK-u ct Y e)IchK—l)’ .

Then we have

(31) Z*=n*+e*+o,(n"7?) .

Let 6}m., be the covariance between +n,e%, and vn, ek, and denote
z’;k:(a?fkm,uv) ’ 'i=1,"-, Ir

(32)
Z*=Diag. [Z¥/2;,---, TF[2,] .

It is easily seen that Z* converges in probability to »* and vn (Z*—
7*) is asymptotically normal with mean 0 and variance-covariance ma-
trix 3*. The vector »* may not lie in the subspace spanned by the
column vectors of W. Let

(33) Zh =t~ Xuf* + St el to(n7)

where z*={r}} and B* are any constant vectors and the &}%,’s are de-
viations determined depending on {r}} and §*. Now the WLS estimate
of (z¥, p*¥') is
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i-*
(34) ( ﬁ*> —G*WV*Z*

where V* is an estimate of X* and G*=[W'V*'W]-'\. By Taylor ex-
pansion we can write

(35) G*W'V*'=T*W'3*-'+ E+o,(n'") ,

where I'* is the p-limit of G* and is equal to [W'2*"'W]™!, and
I kK ¢ ?

(36) E=3 3 3 [ 2 I"W'2* | Quu—an) -
t=1ik=tu=1 | 0@,

Since (¥, 8*') converges to I'*W'X* 'np*, we have

(37 Sx=p* —WI*W'I* 1p*

Denote

(38) (;';) —[*W I*-ig% |

then

(39) (;’:) = G*W’V*“(W(;::) +8*+e* ) +o,n71%)
= (;i’:) +GHWIV(§* ) o (n ) .

Using (35), (37), (38) and that I'*W'Z*-1gx=0, we have

(40) (;”;) - (;’::)  Eg* T*W' %1% 4o, (n") .

This leads to the following theorem.

THEOREM 2. Suppose that for a K-variate continuous c.d.f. F(2)
the linear model defined by (M,) and (M) is satisfied and that G,(z),
k=1,..., K are the hypothesized univariate marginal c.d.f.’s of the Z.
Then, as n tends to infinity under the condition (8), the WLS estimator
of (z', B') converges in probability to (38). Further vn([#—t**,[f—
B**)) has an asymptotic multivariate normal distribution with mean
vector 0 and variance-covariance matric I'**, where I'** is the asymp-
totic variance-covariance matrix of v n(E&*+I*W'I* le*).

COROLLARY 2. If as m tends to infinity &* tends to 0 with order
o(l), v (#, B'Y has the asymptotic variance-covariance matric I'*.
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6.2. Asymptotic efficiency of the test for homogeneity of I populations

In order to see asymptotic efficiency of our procedure, let us con-
sider testing homogeneity of I multivariate samples which was stated
in the preceding section. Assume that » tends to infinity with satis-
fying the condition (8). Suppose the null hypothesis H, given in the
Section 5 is tested against an alternative defined by

(41) Hn: ﬂi=ﬂi/~/7 ’ i=1!"'9 I:

where B,=(Bu4,**, Bix)’, 2=1,--+,I are unknown K-dimensional vectors
such that 2,8,+---+2,8,=0.
By Taylor expansion, we have

— ok _.Btk_ f k(Tku) —1/2
“ T R i) T

where 3, =Gp\(Fuiltwl), u=1,---,¢6—1, k=1,---, K. Thus

(43) 7*=[1,Q Al*—&*/v/'n +o(n"?) ,
where
(44) feu=Buf [k](Tku)/ g[k](rtu) ’

w=1,-++,¢,—1, k=1,---, K, 4=1,++,1I.

Further as » tends to infinity under condition (8), the asymptotic vari-
ance-covariance matrices Y¥, ¢1=1,.--, I tend to the same matrix, say,
Z¥=(0¥imuw), Where the elements are defined in the same manner as
G emun S With replacing q; ymuo and Quw DY Qo xmus @nd o, respectively.

For testing H, against H,, let z=(ry, "+, Tioj1y* * *» Treg-1)'s B be any
(I-1)K dimensional column vector and

r I 0 7

(45) X= 0 L
Ao A

T 5

Thus H, is defined as 8=0. Further let
lcl—l
(46) X= o, - ° |
ch-l

then I'* defined in Section 6.1 becomes
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e [AZ3A 0 =
") r [ : A®X.,’Z’;""‘Xu]’

where A=(2,3,,—2,2,/2;) and 8, is the Kronecker’s delta. Thus it fol-
lows that #**=7* and

(48) B =[ARQ X/ T} X[ I;..Q X/ TF1D(8¥) ,
where
DE&*)=[2(8F—8&F),- -+, (81— &)Y .

Consequently the noncentrality parameter of X* statistic for testing H,
against H, is written as

(49) DE*) A7 QX EF Y[ X{ZF ' X (X ZF ) D(E*) .
For obtaining a simple expression of ¥?, let

fk=[f[k](1'kl)) Tty f[k](chk_1)]l y k=1' cee, K ,

(50)

gkz[g[k](flfl)y ) g[k](z‘;ckck-l)]’ [} kzl, ety K ’
and
(51) F=Diag. [f{,---,ft], G=Diag.[gl,---, gk],

and further let

kaz[qo,km,uv—quuqOmv] ’ lék;&méK ’

(52)

Qu=[00— Qo] ,  1Su=wv=e,,, for k=1,---, K,
and

Q=(Qn) -

Then we have
(53) & =G"FX.p.,
and
(54) Tr=6G"1QG .
Further
(55) X( 2 Xo=[9.Q""gn] ,
and

(56) ef’Z§_1Xo=ﬂ5[fk’mem] y
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where @™ is the (k, m) block matrix of @!. After some manipula-
tions, we have

(57 r'=31 A BIFIQ"0. (@™ 9.1 Q™ FIB,

This gives

THEOREM 3. The test statistic X*® for testing H, against H, has an
asymptotic noncentral chi-square distribution with (I—1)K degrees of
freedom and noncentrality parameter given by (57).

COROLLARY 3. When ¢,=-.-=cx=2, we have
I
(58) r'=3 18 D(F)QD(F)B. ,

where Q=[Din—DiPn); Pimn=Pr.(Y,=1 and Y,=1), p,=Pr.(¥,=1) and
D(F)=Diag. [f(zy),* -+, f(rx1)]-

The noncentrality parameter (58) does not depend on the assumed
distribution G.

COROLLARY 4. When K=1, the noncentrality parameter y* reduces to

(59) r'=(E 26, AFE, GY,
where
(60) o(F, G)= 33 2,4,(F)4,G)/o( F)o(G) ,

HE)=3p A F),  H@)=3 p,4,G),

A(F)={f(r))—f(z;-)}p; ,
4(G)={9(z})—9(z7-DYp; » Jj=1,---,c.

The next theorem states that misspecification of the latent distri-
bution usually reduces the power. For this purpose, let us denote by
(G| F') the noncentrality parameter of the chi-square statistic obtained
on the basis of the distribution G(z) when the true one is F'(z). We
have

THEOREM 4. For any continuous K variate c.d.f. G(2) the inequality
(61) F|F)Z7 G| F)
holds. The equality holds when every B,, i=1,---, I lies in the null space
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of the matrixz appears in (64) below.
PrROOF. Let
G=Q'GX, and F=Q'"FX,,

where @ '* is a matrix satisfying (@ '*)!)=@Q'. Then (55) and (56) can
be written as G'G and B,FG’. Thus we have

(62) PG F)=3 8(FG)(GE)GF B, ,

and

(63) P(FIF) =31 AB(FFB, ,

thus

(69 P(F|F)— G| F)=3 18iF1T-G(GG) ' GIF'B, .

Since I—é'(éé’)“é is an idempotent matrix, the quadratic form is
positive semi-definite. The condition under which the equality holds is
obvious.

6.3. Asymptotic efficiency for a randomized block experiment

Let us consider a randomized block experiment described in Section
5. The latent responses on a subject have a joint distribution F(z— g,)
and consider a sequence of alternative hypotheses

(65) Hn: Fn=llo+ﬁ/‘/% ’

where B=(B;, -, Bx)’ is a nonzero constant vector such that g+---
+Bx=0. The null hypothesis H, is that 8=0. For notational sim-
plicity, let F'(z) and G(z) be the true and assumed univariate marginal
c.d.f. of the latent variables and f(z2) and g(z) be their p.d.f.’s, respec-
tively. Then we obtain the following results.

THEOREM 5. The chi-squared statistic for testing H, against H, has
asymptotically a noncentral chi-square distribution with K—1 degrees of
freedom and moncentrality parameter

(66) H(GIF)=(o(G, FY/o(GY) 33 B,
where
(67) oG =g @—~Q)'f, o(6=0(@-Q)'g,

and Q, is the common limit of the variance-covariance matriz of vn -
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Qe+ 2,,0_1), and Q, is the common limit of the covariance matrix be-
tween ‘\/’n(le)' ) ch—l) and ~/W'(lev' ] ch—l) fo'r any pa‘i/r Of (k) m);
k#m.

The proof is omitted.
Let

(68) o(Fy=F"(Q—)'f.
Then by Cauchy-Shwarz inequality we have
COROLLARY 5. YXG|F)Xy¥(F|F).

7. An illustrative example

Ashiya Public Health Center has been conducting mental health
examination for infants of three years of age for about twenty years
with collaboration of psychiatrists Dr. Kuromaru and his collaborators.
A cross-classification table given in Table 1 was obtained from the ex-
aminations of infants who lived in Ashiya City and marked the third
birthday between October 1981 and September 1982. Table 1 consists
of three two-way marginal tables of the three variables Y;, Y; and Y;
in four groups. The observed variables and groups are defined as fol-
lows ;

Response variables :
Y,: Performance of form matching task (¢,=3; 0-2, 3, 4), which

Table 1. The two-way marginal frequencies of the three response vari-
ables on every four groups classified by sex and sibling condition of
infants of three years of age.

Sex Siblil.lg' Yl._ Y2 Yl - Ya YZ_ Y8
condition 1 2 3 1 2 1 2
1 5 16 28 25 24 18 1
Alone or 2 10 52 70 4 88 42 42
3 4 16 24 19 25 28 94
Male
1 5 18 22 2% 19 4 4
Otherwise 2 11 54 82 777 51 34
3 2 13 30 %4 21 62 72
1 2 22 24 1 37 6 1
Alone or 2 3 45 93 34 107 29 59
3 2 21 32 14 41 24 125
Female
1 4 20 21 23 22 11 0
Otherwise 2 6 46 71 54 69 48 34
3 1 16 24 19 22 37 79
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is a measure of intellectual development.

Y,: Utterance (¢;=3; a word, two-word, three-word utterance).

Y;: Articulation (¢;=2; poor, good).
Factors:

A: Sex (1: male, 2: female)

B: Sibling condition (1: alone or the first, 2: otherwise).
We can assume the existence of the latent traits related to the above
observed variables. Let the mean vector of the latent traits be g,;=
(feg1r Mijer pigs)» ©=1,2 for the factor A and j=1,2 for the factor B.
The free threshold parameters are z=(zy, 75), and 74=0, so that the
coefficient matrix of = is

-1 0 o 0]'
A‘[o 0 1-1 of"

Firstly we considered the unstructed model, that is, X was the 12x12
identity matrix. Assuming that the three distributions of the latent
variables belong to the same location family, we tried four distribu-
tions ; normal, logistic and double exponential of the first and second

Table 2. Goodness of fit statistics and groupwise indices of goodness
of fit for four latent distributional models.

Group Normal Logistic DE* First DE Second
Male 1 0.716 0.814 0.307 1.001
Male 2 1.401 1.312 1.221 1.238
Female 1 2.367 3.095 1.341 3.349
Female 2 0.556 0.645 0.440 0.726

Total 5.040 5.867 3.308 6.315

* DE stands for the double exponential distribution.

kind. The weighted sum of residuals S(%, ) for each distributional
model are given in Table 2, where the samplewise values are defined
by

nl<ZL—WQ<;>>' L—*(z-w,(f})), 1=1,2,3,4.

Though every distribution did not show any significant departure from
the data, we adopted the double exponential distribution of the first
kind, since it gave the smallest S(%#, z#). Table 3 shows the estimated
location vectors, threshold values and their estimated standard devia-
tions. A table of analysis of variance is given in Table 4. This sug-
gests that the two factors do not affect the development of the gen-
eral intelligence, but do independently the development of the faculty
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of speech. Following the results in Table 4, we proceed to fit a sim-
ple model having only main effects of A and B on Y; and of A on Y,.
The design matrix is

|
OO OoOrROoOOROOHO
I
I
HoOoOHROoOOROoOOROO

H OO OO OOHEOCO

OCOHH OO HOOMHEHOOM
OHH OO OOMHOOH-O
H OO OOMEOOKHEOO

Table 3. Estimated location vectors and threshold values and their
estimated standard deviations.

Latent variables

Y1 Y. Y

Male 1 —0.551 0.323 —0.066

(0.083) (0.074) (0.088)

Male 2 —0.487 0.380 —0.475

Location (0.081) (0.072) (0.097)

vectors Female 1 —0.468 0.588 0.344

(0.079) (0.073) (0.080)

Female 2 —0.546 0.427 —0.248

(0.086) (0.077) (0.096)
Threshold values —-0.971 —0.605
(0.037) (0.027)

Table 4 MANOVA and ANOVA for sex and sibling conditions.

Variables (Yy, Y, Y3) i Y: Y,
Factors X2 af X2 af Xz af X2 af
Sex 13.427 3 0.022 1 4.418 1 12.344 1
Sibling condition 31.917 3 0.008 1 0.500 1 30.653 1
Interaction 3.120 3 0.812 1 2.175 1 1.306 1
Total 52.286 9 0.851 3 7.296 3 47.870 3

The goodness of fit statistic of this model was S(Bl;})=3.308 with 6

degrees of freedom and S(z, 1§)=6.897 with 12 degrees of freedom. The
estimated main effects are given below with estimated standard devia-
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tions (in the parentheses).

Y,: main effect of sex —0.080 (0.0369)
Y,: main effect of sex —0.164 (0.0445)
main effect of sibling condition 0.243 (0.0428)

8. Further discussion

The WLS analysis of the multivariate latent scale linear model is a
natural extension of the maximum likelihood (ML) analysis of the uni-
variate latent scale linear model. In univariate case both WLS and ML
estimators of (z/, 8') are BAN, so that they are equivalent without the
term of order o (n~"?). Similarly the WLS procedure for the present
model is asymptotically equivalent to the ML procedure in the follow-
ing sense; if the IX(¢X-:--Xcx—1)—(p+q) unspecified functions of
multinomial probabilities of the contingency table were arbitrarily de-
fined, the ML estimator of (', 8') had the same asymptotic variance-
covariance matrix as the WLS estimator. This can be easily checked in
the same way as Amemiya [4]. However, since our method does not
utilize second order information, as a result, the convergence to the
asymptotic properties may be slow. In order to utilize second order in-
formation, all bivariate marginal distributions are to be specified. This
requires additional assumptions on the latent variables. Suppose that
the latent response vectors are multivariate normal and variance-covari-
ance matrices are common. Every higher order marginal probability is
defined in a parametric form, therefore a WLS procedure involving bi-
variate marginal probabilities could be available and might yield a more
efficient estimator than that considered in the present paper. In a bi-
variate case, an ML procedure can be applied as has been discussed by
Uesaka [26]. Amemiya [3] showed, in bivariate quantal responses, that
the ML estimator is more efficient than the one given by a weighted
least squares method based on the only univariate marginal probabilities.

A similar approach to analysis of multivariate discrete responses
is done in the context of factor analysis of dichotomous variables,
Christoffersson [13], Muthen [22] and Muthen and Christoffersson [23].
They assume multivariate normality for the variables underlying quantal
responses, and utilize generalized weighted least squares method involv-
ing bivariate marginal probabilities. Their method might be applied to
our model if every bivariate marginal probability were specified, how-
ever, such a formulation is not studied here.

A computer software program for analysis of multivariate latent
scale linear model was written by the author and implemented to NISAN
system developed by Asano and others, Asano et al. [6].
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