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Summary

Over the past decade, procedures have been developed which allow
one (in the univariate case) to make inferences about means even in
the presence of unknown and unequal variances. A general method
(called The Heteroscedastic Method) allowing this in all statistical prob-
lems simultaneously was formulated in 1979 and allowed specifically for
the multivariate case (e.g., MANOVA and other multivariate inferences).
While in the univariate case The Heteroscedastic Method is readily im-
plemented, in the multivariate case practical implementation was not
heretofore possible since a certain problem in construction of matrices
required by the method had not been solved. In this paper we solve
that problem and give a computer algorithm allowing for use of the
solution in The Heteroscedastic Method.

1. Introduction

Suppose one has available several (k, say) sources of observations,
and that source 4 (denoted ;) yields observations which are normally
distributed with unknown mean g, and unknown variance o} (1=1,- -, k).
Often one would like to make statistical inferences about pgy,---, g,
which have performance characteristics (e.g., power for a test, confi-
dence coefficient for a confidence interval, etc.) which do not depend
on ¢%,-+-,0l Procedures for achieving this when k=1 were first given
by Stein [16] (in the case of testing and confidence intervals on z),
and generalized to the case k=2 for the Behrens-Fisher problem by
Chapman [1] and Ruben [14]. While Stein [16] and others considered
the general k=2 case, they did so only under the restriction that o}=

oo :g‘,’c,
Solutions for the case k=2 in most instances require that one use
not sample means, but a generalized sample mean ... a fact first re-
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alized and utilized by Dudewicz and Dalal [5] in their solution of rank-
ing and selection under heteroscedasticity. Since that time solutions
have appeared for cases of multiple comparisons (with and without a
control), analysis of variance, various interval estimation problems, and
other goals; for a review of this work see Dudewicz [3].

These solutions for k=2 were formalized into a general method
(called The Heteroscedastic Method) for solving any statistical problem
involving py,---, 1, via use of a decision-theoretic framework, by
Dudewicz and Bishop [4]. The resulting method allows one to specify
any problem and automatically have the required solution produced
(whereas previous work started anew from first principles to produce
the solution for each separate statistical problem). In addition, using
a sampling scheme proposed by Chatterjee [2], it was possible to give
The Heteroscedastic Method for a fully multivariate case where each
of the k populations produces p-variate observations with a different
(unknown) covariance matrix, thus furnishing a breakthrough in multi-
variate analysis. This was utilized by Dudewicz and Taneja [8] (also
see Dudewicz and Taneja [7]) to extend their solution of the multi-
variate ranking and selection problem with known equal variance-co-
variance matrices to a solution of the general case of unequal and un-
known variance-covariance matrices. However, heretofore it was not
possible to use the multivariate procedures in practice because although
certain matrices were known to exist, an algorithm for their calcula-
tion was not known. In this paper we: (1) give the multivariate sam-
pling procedure showing the matrices required (below in this section);
(2) provide an equation system whose solution will yield the required
matrices (Section 2); give an explicit solution of the equation system
for the bivariate (p=2) case (Section 3); and give a numerical example
of construction of the required matrices (Section 4).

The Heteroscedastic Method is a procedure P, consisting of a
sampling rule (telling how many observations are needed from each
population) and a terminal decision rule (telling which decision to take
once all observations have been made). The sampling rule involves a
constant z>0 which (see Dudewicz and Bishop [4]) can always be chosen
so as to have the procedure guarantee the desired operating character-
istic requirements when a certain terminal decision rule (specified pre-
cisely by The Heteroscedastic Method, but not of explicit concern in
this paper; for further details see Dudewicz and Bishop [4], Theorem
(2.20)) is used. Details of the sampling rule will now be specified.

Sampling rule for Puy. Select 2>>0, an integer n,>p, and a pXp
positive-definite matrix (@,). Take observations from each and every
population =, (¢=1,---, k) as follows. Take =, initial observations X,
s+, Xon, where Xo=(Xuy, Xoaiy+ -+, Xos)' (1=1,2,--+, my) and compute
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- 1 )
(1-1) Xn:— > Xcll ’
Ny i=1
) — —
(1-2) Sctj =l=1 (Xcu—Xa)(JQﬂ—Xc,) ’
(1'3) 1 Sctj ’ 7:1 j"—"l’ 2,"',1)-

= D)
Define the positive integer N, by
(1.4) N,=max {no—i-p’, [z'luﬁ‘. a,,sm]—i—l} ,
yJ=1
where [q] denotes the largest integer less than ¢, and select p (pX N,)
matrices for r=1,---,p:
(1.5) Acr=(a'cru) (t=1,2,---,p; 5=1,2,.+-, N)
in such a way that:
(1'63') ( i ) a‘or“= e =a°'in0 ’

(1.6b) (ii) A.n.=e, where 7, is the N,x1 vector (1,1,.--,1)
and ¢, is the px1 vector whose 7-th element is 1
and all other elements are zero;

and

(L.6c) (i) A.Al=2(a")®(sY), where Al=(AL, Ab,---, AL), ®
denotes the direct product, and (b*) denotes the

inverse of the matrix (b,), »,1=1,2,---, p.
Next take N,—mn, additional observations X, , .-+, X.v, and compute
~ » ¥
(1'7) Xcr=i=2l = acr“}(cu (T=1, 2, LI p) .

For =, construct the p-dimensional vector )i:()il, v X o), c=1,2,--- k.
All decisions are based on the vector

(1.8) X Xy, X) -

The problem (which must be solved to allow practical implementa-
tion) is construction (for each population) of the matrices in (1.5) so
as to satisfy (1.6a), (1.6b) and (1.6c). (The distributions of the statis-
ties constructed in The Heteroscedastic Method are generally compli-
cated, however recently Hyakutake and Siotani [12] have given an ex-
act treatment of these distributions for p=2, and asymptotic approxi-
mations for p>2.)
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Since the research in the present paper was finished and submitted
for publication in 1984, Hyakutake [11] presented another derivation
of matrices which satisfy the required properties. It is easiest to see
the relationship of his work to ours by reference to the case p=1 (the
one-dimensional case which both his work and ours extend to p=1).
In the one-dimensional case, one has to find p=1 matrix A, for each
population ¢=1,---, k, where A, is pX N,.=1XN,, satisfying (1.6a,b, c):
A=(a,- -+, ay) with a;=---=a,, a;+---+ay=1, ai+---+ay=a/(as).
As noted in Dudewicz and Dalal ([5], p. 37), there are an infinite num-
ber of solutions to this system, and in various p=1 case papers authors
have settled on a variety of different solutions, especially those where
one requires @;=- -+ =@, =@y =+ =0y_;, and those where one requires
@n1=-++=ay (each of which gives a unique solution-subject only to
choice of a root of a quadratic equation). As Dudewicz and Dalal note,
each of these infinitely-many solutions (such as the two just displayed
implicitly) has the same properties under the model, so there is no rea-
son to prefer one to any other. However, Dudewicz, Ramberg and Chen
[6] note the different solutions will have different robustness properties,
and they prefer the solution which sets @, ,1=:--=ay on these grounds;
indeed, it has become nearly the “standard ” solution in the many papers
now published on this area (see Wilcox [17] for a listing of many of
these). The relationship of our solution for p dimensions to that of
Hyakutake [11] is that ours is a natural extension of the p=1 case in
that requiring the additional restrictions (2.20) produces a unique solu-
tion (subject again to the multiple roots of quadratics), while Hyaku-
take’s method yields other solutions. Hyakutake’s solutions do not pos-
sess the equalities ours do, though his may be easier to compute with
existing software. (Software for our solution for p=2 is given in
Dudewicz and Taneja [9]. Solution for general p requires only a simul-
taneous equation solver, but for the aid of practitioners we are in pro-
cess of providing software for general p.) In the case p=1, Hyaku-
take’s solutions have

A=, -, aN)=-1—1\,—ej;v+KG-l[ﬁ‘_imjmj;_m; Im]

where G,., and K., are not unique, and need not have a, ,,;=---=ay.

Now that solutions to the problem of the construction of the ma-
trices needed by The Heteroscedastic Method of Dudewicz and Bishop
are available, work on these multivariate methods is proceeding rapidly
and internationally. In particular, Dudewicz and Taneja [9] have given
software already described above, and have given an application to sele-
cting the best of k=4 bivariate populations in an accounting example
in the accounting literature; this work uses the solutions of this pre-
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sent paper. Also, Hyakutake, Siotani, Li and Mustafid [13] have given
percentage points and power functions for various statistics in the Het-
eroscedastic Method, while, using the solutions of Hyakutake [11], Sio-
tani, Hyakutake, Li and Mustafid [15] have considered simultaneous
confidence intervals of given length for mean vectors. We hope that
these results will lead to full exploitation of the benefits of The Heter-
oscedastic Method in the years ahead. In addition, more work is need-
ed on the question of which solutions of the matrix problem are most
robust under reasonable deviations from the assumed model, as well as
on choice of the matrix (a).

2. An equation system yielding A,,---, 4.,

Our goal in this section is to provide a method of constructing
matrices A,,---, A, in (1.5) which satisfy (1.6a), (1.6b) and (1.6¢c). In
carrying out The Heteroscedastic Method’s procedure Py, this will be
done independently for each population (i.e., for ¢=1,---, k). Since re-
sults from one population do not affect those for other populations, we
can (without loss) drop the subscript ¢ in our work in this section. It
will also be useful to denote N, of (1.4) as n=n,+m—1, and we will
make use of the following

LEMMA 2.1. Let E be an r+p+q by r+p+q matriz partitioned as

Arxr Orxp Brxq
OPXT FPXP OPXQ
qu' quﬂ quq

2.2) E=

where subscripts (which shall subsequently be dropped for simplicity) re-
fer to sizes of submatrices, 0 is a matriz with all entries zero, and F=
1,+1, where 1, is the pXp matriz all of whose entries are 1, and I,.18
the pXp identity matriz. Then the determinant

A B

(2.3) |El=(p+1) |, p)|-

ProoF. Elementary operations on the middle p rows of E result
in changing F' to

I 0
2.4 F=| e
( ) lep—l p+1
Therefore (expanding successively by the r+1-st to r+p-th columns of
the modified E) we find the desired result as claimed in (2.3). The
following result (from Lemma 3 on pp. 139-140 of Chatterjee [2]) will
also be useful below.
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LemMmA 2.5 (Chatterjee [2]). Let (ay, @w, -+, &), 1=1,2,---,1, be
l<m linearly independent* m-vectors, let 1;U=i auty (3, 7=1,2,--,1),
k=1

V=(vy), and let c;x,=(cy, €3+ +, ;) where ¢y, ¢, -+, ¢, are given real mum-
bers. Then, subject to the conditions
(2.6) A2+ Qe+ -« + 0 Tn=0C; (:=1,2,---,0),

234+ +a2 has as its minimum value

V c{xl

0
(2.7) — o J 1
14

Our problem now is to find p matrices (each pxn, where n=n,+
m—1)

(2'8) Al: Azy ] Ap

(these are the matrices in (1.5) for some fixed ¢, 1<c¢<k) which satisfy
(1.6a, b, ¢). Note that, since use of Lemma 2.5 will require l=p* in-
dependent vectors to construct A,,---, A,, we will need m=1+9* (or,
N.zny+p* at (1.4)). (It is known from Chatterjee [2] that these exist
for n as specified in (1.4).) Now finding such A4,, 4,,---, A, is equiv-
alent to finding B, B;,-- -, B,, denoted (for r=1,---, p) by

(29) Br=(br-ij)=(ﬁr1 Brz' . '.Brp)’ ’
such that the p* m-vectors 8,, (r, 1=1, 2, - -, p) satisfy conditions (C*):

Bid=n,, (with & an m-vector given by &'=(1,1,
-+, 1, ym,), 7,. being 1 if i=r and 0 other-

wise), and
@.10) (CY) Ise), an
rBp=artsz (§=1,2,--,7=1) ) for t=1,2,...,p
ﬁ;iﬁm:ansmz u=1’ 27 ey 1—1.

After finding such B,,---, B, which satisfy (C*) one takes A,--:, 4,
as given by (for r,¢=1,.--, p)

a’r~t,n0+u=b'r-iu (u=11 2; 0ty m—l)
Aoy =" =ar-(n0=br-iml‘v g .

In general there will be infinitely many B,,- .-, B, which will satisfy
(C¥). To obtain a unique solution within this class, we will impose the

(2.11)

* In applications, it is sometimes convenient to replace independence of the ! m-vectors
by the equivalent condition of non-singularity of the !x! matrix (vsj).



THE HETEROSCEDASTIC METHOD: MULTIVARIATE IMPLEMENTATION 183

additional conditions

(2-12) (C**) (ﬁri)l:(pri)2= cee :(Brt)m—p(r—l)-t ’ ("', 1=1,-.-, D).
It can be shown that B,,---, B, satisfying (C*) and (C**) exist iff

(2.13) min {8,.8,;: (C*) satisfied)}
=min {#,.8,.: (C*) and (C**) satisfied} ,

as we shall now show in several Propositions.

PROPOSITION 2.14. Assume that vectors B, P, -+, Bri-1 Satisfying
(C*) and (C**) have been found. Then a B, satisfying the corresponding
conditions exists.

The proof of Proposition 2.14 follows the lines of the more general

PROPOSITION 2.15. Assume that ’UectO’rs ‘Bu, ﬂlg, MY Blp; /921, ﬁgz, 0ty
Bavie v o3 Bi-tis Bi—r,200 s By-1,0 Bty Bizr** *s Byi1 satisfying (C*) and (C**)
have been found. Then a B, satisfying the corresponding conditions
ex1sts.

ProOOF. It is known (see the discussion above and following (2.9))
that vectors satisfying (C*) exist, and that min {8..8,:: (C*)}<max {8..8,::
(C*)}=+o. Hence, if (2.13) holds, at least one set of such vectors
can be found which satisfies (C**) as well as (C*), without further re-
stricting the feasible values of 8,.8,;.. It follows that it suffices to show
(2.13) in this case, which we denote as (2.16) for reference. Let (for
a=1,2,.-.,5-1; b=1,2,--+, p)

(2'17) .Ba,b:(xl,a,br L2,a,00°° s xm,a,b),
and (for k=1, 2,---,1—1)
(218) Bjkz(wl,kr Wa,xs***» wm,k),

denote the given vectors which satisfy (C*) and (C**). The vector to
be found will be denoted by
(2.19) By=(21, 23"+, 2n)' +
Then conditions (C*), with the additional (C**) restrictions, say (2.20)
are equivalent to the system

Zit2+2t o2t N 2=y

a=2=0 (=23, m—p(j—1)—0)
(2.21)
Xy 0,02+ Lo 0,02t + T 0, 0%n =782

(b=11 2;"',17; a=1, 2)"'!j_1)
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W’II’LXt—lZle =a'ls'% ’

where W=(w,) (¢=1,2,---,m; d=1,2,-..,%—1) and Z=(z,+, %)
These are !|=m—1 equations in the m unknowns z,---, z,, and must
be independent. For, let V denote the px((j—1)p+1i) matrix

VE(a; ﬁlh ﬁlzy ctcy ﬁip! ﬁ211 ﬁzzr Tty ﬁZp, ct Yy ﬁjly Tty Bj,i—l) .
ny+m—1 l e Opimt

VV=| e (@R sz

Ot—lxl

where e=(e,, &5, -, €;,_,)’ and ¢, is as defined in (1.6b). By the hypoth-
eses of Proposition 2.15 the vectors By, Bias: -+ Bips B Bazss* s Bapi**3
Byt Bitr* **s By—t,p3 Byt» Bjzr*+ +» Byi—1 satisfy (C*) and (C**), and of
course exist. Note that (see p. 147 of Chatterjee [2]) |V'V|>0, hence
V'V is non-singular. We will now apply Lemma 2.6 for which we
need

vy=m+m—1, Vi, meap-tt-an =1 (@=5-1,5-2,---),
. v,,=0 (all other I)
For a=2,8,.---, m—p(j—1)—1%, v,,=2 and

(1 for ¢=3,4,.-, m—p(j—1)—1

'”aﬂzl . .
0 for all ¢g>m—p(j—1)—1

(2.22)
For b=1,2,---, p,

— 1 —_ :
vm—p(j—l)—£+l,m—p(j—l)—i+b—ausb z (l—l, 2,000, 5-1)
' — -1,1
'vm—p(j—l)—i+l,m-—l'—aﬂst 1R

Vmeipt,meipr =0 17718772

.

Vn-1,m—-1= a‘”si—l'i_lz .

By Lemma 2.5, the minimum of the right hand side of (2.16) can there-
fore be expressed as in (2.7). Let ¢, be as in (1.6b), the p-dimensional
vector with r-th element 1 and all other elements zero, and A the
(7—Dp+i—1 by (j—1)p+i—1 matrix («”)®s™*. Then by Lemma 2.1
the minimum value of the right hand side of (2.16) is, letting e=(e{ ¢}

o ee e;_l)"
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ny—m+1| & O1xs—1 N
s 'allstz
(2.23) Az
0;_1x1 alighi-1z
Ny alst'z- - -alishiTz 0

divided by the determinant of the same matrix with the right column
and bottom row deleted. However, this is the same minimum as shown
by Chatterjee [2], p. 147, for the left hand side of (2.16), which com-
pletes the proof of Proposition 2.15.

If we substitute j=1 in Proposition 2.15, we obtain Proposition
2.14 as a special case. If we choose i=1 in Proposition 2.15 we see
that, assuming vectors B, B - s Bipi Bur* s Baps * *5 By—r1r* * *» By-1,p haVE
been found satisfying (C*) and (C**), then 8, (the first row vector of
the j-th matrix) can be constructed.

PROPOSITION 2.24. Vector B, satisfying (C*) and (C**) can be found,
completing the proof that B,,---, B, satisfying (C*) and (C**) exist.

PROOF. Denote B,,=(,, %3+ +, &,). Then conditions (C*) and (C**)
are

BLBu=0a"s"z=c (say),
(2.25) ,Bfl(’ = 7]11 = 1 y

Ty=Tp="-+ =T, =a (say),
or

(m—1)a*+=x5,=c,

(2.26) (m—D)at T &n=1,
y=Ty=++ =Ly =0,
or
By=Ly=++ =Ty =0
_ [li\[l—(l—noa“s“z)<1+ T )}/(no+m—1)
.27

Tn=(1—(m—1)a)/vny ,

which is unique if we choose the +4— for a. (Recall that m=1+p?
>2, so m—1=1, and ny+m—1=1.) The discriminant in (2.27) will be
>0 iff (subject to the linear constraints in (2.26)) ¢ is a possible value
of x'+..-+a_,+2%. However, by Lemma 2.5 subject to the linear
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constraints in (2.26) the possible values of z}+--..+z} are all values
in the closed interval [1/(n,+m—1), ). Hence the discriminant in
(2.27) will be =0 iff

1
2.28 — = <a's'z.
(2.28) n+m—1 =aee

Recall that, for any two positive-definite pXp matrices (e;;) and (s,)
with respective inverses (a') and (s™),

(2.29) (@) R ™) '=(a:) R (s+1) »
hence (by positive-definiteness) a''s">0 and (2.28) holds iff

(2.30) no+m—1g£‘i§“_)1 .

However, it follows from (1.4) (since N,=n=mn,+m—1) that

P

21 08y
(2.31) no+m—lg——-—"/=’z ,
from which (2.30) clearly follows in the case p=1. (When p>1, one
finds as in Chatterjee [2] that the needed discriminants are all >0 iff
(2.31) holds, as it does by (1.4).)

3. Explicit solution of the bivariate (p=2) case

In this section we provide an explicit solution of the equation sys-
tem yielding the p=2 matrices A,,, A.;, each 2Xxm, which satisfy (1.6a),
(1.6b) and (1.6c) in the p=2 case. Equivalently, we construct explic-
itly the p=2 matrices

(8.1) B1=<B{1>E<“’1 Ty v o Ty x,,,)

.3{2 Y1 Yo' *Yn-t Yn
(8.2) BZ:(;%)E (ux Us + + Uy u,,,)
B W Wy Wyy Wy

satisfying (2.10) and (2.12) (after which A, A; are constructed via (2.11)).
Here, by (2.12), we take

U=Ly="* = =T s=Tp_2=Tp-1
3.3) =YY= = Yn-s1=Yn-3s=YUm-2
WM=Ug=" " = Up4=Up_3

W=Wy="+"*=Wp_y .
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By (2.10),
(8.4) g, = 1M —1n,
L)
and
(3.5) BLBu= (m -1} _ k= za''s!! .

Using %, from (3.4) in (3.5) we find

(3.6) (m—1)(m+m—1)22,_; —2(m—1)2,,_; — (neza''s''—1)=0 .

Hence B, can be constructed from (3.4) and (3.6).
Now let

3.7 =L ——A,  p=zallsh.
(3.7 a e r=za's
Then, again by (2.10), after simplification,

1

Yn=— m ((m - 2)ym—2 + ym—l)

(3-8) ’!Im—1=%;"‘(m—2)ym—z

(m—2)(”"'—1)1!3,‘-2—2—7'—('»1,—2)y,,‘_2-}-'"'_0'*'._1~ T aatig—() ,
a &

Ny

JSrom which Bi; can be conmstructed.
Letting

(3.9) G =Ymy— j’nLo (i=1,2)

3.10 g=za"s?, f=zats", n= ga—o f ’
e a(g,— 1)
by (2.10), and again after simplifying, we find

_1
Ve

Up = ((m_g)um—8+um—2+um—l)
Up—1= _f' - (m - 3)“’1»—8 —Up—2
a
3.11)
Um—s=7— (m - 3)u‘m—3

(m—3) (M —2)um_s— 2(Mm — )7y + 27"

__2_,2_77_'_ m+1 _g_mzz 1n_(

Ny

187
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Jrom which By can be constructed.
Finally, using (2.10) we have the B, relations which, setting

(8.12) g*=zals® y=2zals?, t =z2a2s?
and simplifying, yield

W= ‘\/1%; (1_(m_4)wm—4_wm—8—'wm—2—wm—l)

W1 =0,— (M —4) Wy — W3 — Wy,_s
(3'13) ’wm—z-——"z“(m—4)wm-4"wm-a
Wy =083— (M — )W,

(m—4)(m—3)yw},_,—28y(m —dw,,_,+2(31+ 37)

—20,(8,+8;)+ n‘:n—i'l a4 1-29, —zats®—()

0 Ny
where
alzg_*_—L , azz XJ-—¢1(’1 — Ym ,
a avn, b—y v 1y (p—1)
(8.14) Gi=Up_i— J% (1=1,2,3),
3= t— 18— (s— )3 _ U .
¢s— ¢ v 1 (¢3— @)

Thus, By can be comstructed from (8.13). This completes construction
of B, and B,, hence of A, and A,.

4. Numerical example of construction

For illustration, take p=2, z=1, (a,,)=1I, and n,=10 is part of the
Iris data of Fisher [10], so that the first stage data is

<7.o 6.4 69 55 6.5 57 6.3 4.9 6.6 5.2>
32 32 3.1 23 28 28 838 24 29 27/ °

Then

= (6.10 5289 .1933
X=( ) , =< : ) ,  N=14.
2.87 8=\.1933 .1157

The additional data is
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(5.0 59 6.0 6.1>
2.0 3.0 22 29/’

and we find the required matrices to be

A ___(——.29848-'--—.29848 996199  .996199  .996199 .996199)
' .62751... 62751 —.55304 —.55304 —.55304 —4.6160 /’

(.00000- --.00000 .90005 90005 —1.80010 .00000)
.07695.--.07695 .61364 —3.5270 3.05651 .08746/

Then X=(5.34655, —1.15755)'.
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