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Summary

In the problem of multivariate calibration, Williams (19569, Regres-
sion Analysis, Wiley) and Wood (1982, to appear in Proc. 11th Internat.
Bio. Conf.) have proposed a decomposition of the usual Hotelling’s T
statistic into the sum of two statistics for use in constructing confi-
dence regions. This paper presents general results for the moment
terms basic to Fujikoshi and Nishii’s (1984, Hiroshima J. Math., 14,
215-225) approach to the distributions of these statistics, and presents
simple alternative approximations to their percentiles.

1. Introduction

We assume that a set of p dependent variables y=(y;,---, ¥,) is
linearly determined by a set of ¢ independent variables x=(xy,- -, %),
and that a calibration sample of N observations of # and y are avail-
able. A new observation y is made at a single unknown vector x, and
it is required to make inference about x. If, as is assumed here, the
2’s in the calibration sample were chosen at fixed preassigned values
rather than at random, then this is the problem of controlled multi-
variate calibration (Brown [1]). In the case p=gq, Williams [13] propos-
ed fiducial limits based on a Hotelling’s generalized T statistic, which
yields elliptical confidence regions for « under a certain condition. When
p>q, this approach may lead to empty confidence regions even when
the condition is fulfilled, and Williams [13] defined a statistic R for
testing the consistency of the new y with the model, and a statistic
Q for constructing a confidence region for x. Williams also conjectured
approximations to the distributions of @ and R. Wood [14] pointed out
that the Hotelling’s T*? statistic may be decomposed into the sum of
Q and R, and called attention once more to the problem of the distri-
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butions of these statistics. Fujikoshi and Nishii [7] showed that the
required distribution theory may be related to results of Gleser and
Olkin [8] on regression with an unknown covariance matrix. They ob-
tained early terms in the asymptotic expansion of the distribution of
@ in terms of central chi-squared distributions, and gave the corre-
sponding expansion of the percentile point of @ up to order 1/N2.

In the present paper we obtain general expressions for the moments
which are fundamental to the approach of Fujikoshi and Nishii [7], and
consider the asymptotic expansion of the distributions of @ and R in
terms of central F' distributions. The associated expansions of the per-
centile points of @ and R in terms of F' percentiles yield simple first
order approximations which reduce to the exact result for @ when p=
¢, and may be compared with the proposals of Williams [13]. The prob-
lem is raised of a multivariate extension of Watson’s lemma for loop
integrals, required for the justification of the asymptotic expansions.

2. Decomposition of T
In the multivariate regression model it is assumed that
2.1) Y=1,a'+XB+E

where Y=[y,, ¥+, Y]’ is an N X p observation matrix, X=[z,, - -, zx]
is a known Nxgq design matrix with rank ¢, 1y is an Nx1 vector of
ones, a is an unknown pXx1 location vector, and B is a ¢Xxp matrix of
unknown regression coefficients. E is an NXp error matrix whose rows
are independently distributed as N, (0, £). Without loss of generality

we shall assume that azﬁ} 2,/N=0. The usual maximum likelihood
i=1

estimators of a, B and 2 are

A

a':'.’!_j:

M=

¥iJ/N

i=1

B=(X'X)"'X'Y
2=8m, S=Y'[I,—1,14/N-X(X'X)"X"1Y,

where n=N—q—1=p and I, is the N X N unit matrix.
In the calibration problem a new p-dimensional observation y hav-
ing the same structure as (2.1) is observed,

y=a+B'z+te,

where z is an unknown ¢x1 vector, and e is distributed as N0, 2),
independently of E. Following Williams [13], Brown suggested that a
1—a confidence region for x may be constructed from
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(2.2) T'=(y—§—B'2)S(y—7—Bn)</@)K ,
where
K=—19 _F,. ,.()
n—p+1
(2.3) Fd@)=1+N"'"+2'(X'X) '
and F,,_,.(a) is the upper e-point of F with ¢ and n—p+1 degrees

of freedom.
In order for the confidence region to be a closed set, it is required

that BS“ﬁ’—K(X’X)“ be positive definite, but when p>q the region
may be empty even when this condition holds.
Wood [14] showed that T could be decomposed as

T*=(%—x)BS-'B'(—2)+(y—§— B'%)S(y—j—B'%)=Q+R,

say, where :%=(1§S“1§’)“1§S“(y—17) is the natural estimator of . Wil-
liams [13] proposed R as a test for the consistency of y with the model
(2.1), and @ as the basis for a confidence region for & when p>gq.
(When p=q, R=0 and T*=Q).

If we write u=y—y—-1§'x, and let P,=X(X'X)'X' denote the or-
thogonal projection onto the linear subspace _£(X) spanned by the col-

umns of X, with complement Py,=I—P,, then T%, @ and R may be
expressed as follows,

T?=(S7) (S "),
(2.4) Q=(S"""w) Pg-1125(S"u) ,
R= (S“"’u)’ﬁs-llzé,(S“/zu) .

Wood’s [14] decomposition may thus be represented geometrically as in
Fig. 1.

SV (y—7)

(R)

/ (77
Dls-1287¢

(Q)
Y(s25) SV2p

Fig. 1. Decomposition of T2=Q+R.
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3. Distributions of @ and R

Fujikoshi and Nishii [7] have shown that certain conditional distri-
butions of @ and R may be obtained from Gleser and Olkin [8]. A
concise derivation of these results using (2.4) is as follows.

Let B,=B2 " and B=B2'2. Then we may assume without loss
of generality that 2=1I, If the columns of the px(p—g¢) matrix H,

form an orthonormal basis of the orthogonal complement of B’, then
we may write
R=(S""*u) Ps12yq,(S"*u)=u'Hy(H/SH,)*H}u .

Let H=[H,, H;] € O(p), the group of p X p orthogonal matrices. Then,
conditional upon B, #=(1+N-Y)""2H" is distributed as N,(H'(B,— B)'%,
L), where #=(14+N"")""g, and S=H'SH is independently distributed
as Wy(n, I,), the central Wishart distribution with n degrees of free-

dom. Partitioning % and S as

= | U |? =[E’“] 1+ N-1)-12
“ [fl,g]p—q H{u ( + ) ’

e Su S'lz} & ..
S= ~ ~ ’ S =H'SH y 9 =1’2’
[sﬂ S wmHSE T

we have

(3.1) R= =S5t

where S;,~W,_,(n, I,_,). Hence the conditional distribution of ((n—(p—

9)+1)/(p—q))R given B is a non-central F' distribution with p—q and n—
(p—q)+1 degrees of freedom, and non-centrality parameter

(3.2) p==%'(B—B))Ps(B—Byz ,

noting that the columns of H, span the orthogonal complement of B'.
@ may be expressed as

3.3) Q= 143\7—1 = 0§ — 1Sty = (i — 8 oS5t 1sY Sy — SuS5li0s)

where Su,,:S'u—§x2S~2§‘§z,~Wq(n—(p—q), I). Following Gleser and Olkin
[8], we note that S,,, S, and T=S5;"S, are independently distributed,
the g(p—q) elements of T being independently N(0,1). Hence,

Elu,— Slzg‘z—zlﬁz | E: Ug, S~22] =I'L/(Bo“'B)’5’ ’
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cov [i;—S;3S5"%s| B, iy, Spl= (1 +#sS5ti,),=(1+R)I, ,

and so the conditional distribution of ((n—p+1)/q)(@/(1+R)) given B

and R is non-central F' with ¢ and n—p+1 degrees of freedom and
non-centrality parameter

(3.4) A=(1+R)"'%(B—B,)Ps(B—B,)&=(1+R)"'a*,

say. The above results agree with Fujikoshi and Nishii [7]. These
authors proceeded to develop the asymptotic expansion of the uncondi-
tional distribution of @ in terms of central chi-squared distributions. In
the present paper we shall consider a rather simpler approach to the
unconditional distributions of @ and R in terms of central F-distributions.
This is based on the distribution of non-central F' with v, and v, de-
grees of freedom and non-centrality parameter r (Tiku [12]),

(35)  P(F,.()<F}=0,,(F)+4,.F) 5 =25 (’1)’(7_'1>
r°2 r*2 r=1 r! i=0 J

. ((v1+22)[2) ) (v1]vy) FIH
(¥1/2); 411X+ (vi/v) )Y
where (a);=a(@+1)---(@a+j—1), and o, ,(F) and ¢, ,,(F) are the cumu-
lative distribution function and probability density function, respective-
ly, of a central F' variable with v, and v, degrees of freedom.

The unconditional distribution of R is seen to require the evaluation
of moments p"=Ej;[p"], where p is defined by (3.2), while for the un-
conditional distribution of Q we have

(3.6) P{-’i:gﬂéémﬁ, B} =P(F, . (S F+F4)

where 4=1/(1+R)—1. If we were to substitute in (3.5) and carry
out a Taylor expansion in terms of 4, we should require terms

EH .

1 5] ((—(—0+D/2 pf, 41, . 1
[(1+R)‘ B]- (n+ 1), O i O

where ,F; denotes the confluent hypergeometric function, we ultimately
require the product moments

3.7 Ca=Es(2*p") , r,8=0,1,2,..-.

B[ i j_R)] =E§[2*’E’[—__(1+%)m

Since

Fujikoshi and Nishii [7] obtained asymptotic expansions of early {,,
to order N~? using the perturbation method. In the next section we
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shall consider the general case.

4. The Laplace transform of &

Setting

U=B(X'X)", U=ByX'X)", T=(X'X)"z(X'X)",
we have

@D Ca=@ryt| etr {— L U=Uy(U=-U0| Con{ PoU—To EU-TiY)

. C[,](PUUow[]o/)dU

where C,;(A) is the zonal polynomial (James [11]) corresponding to the
partition [r] of the integer » into a single part, noting that rank #=1.
We first show that {,, is a function of U/U,. Let U,=HUU,",
H=[H,, H)] € O(p), and V=H'U=[V/, V{I'. Then
£,0=(27)"7" etr <—%U‘,’U°> S etr {(U(,’Uo)‘/z Vl——;—V’V}

o[ e[

- Ceo| B[ e [ weviyrwwivy s, 0)]av,

which is a function of U{U,.

We now consider the Laplace transform L, (W/2) of |UJU,[?~1%(,,
with respect to UJU,. This may be written as an integral with respect
to Uo,

L(-;— W) = SUO etr (—-;_ WU.{U.,)C,,(UO’Uo)dU],

=(2r)~""% sv SU etr {—%WU.{UO——%(U R OAC Uo)}

0
: C[r](')C[s](‘)dUodU;
where ¢=z"7"I"(p/2) and the arguments of the zonal polynomials are

as in (4.1). If we complete the square and let

i W\
Z={Uy—U(I+ W)} (I+ W), V=U(W) ,

T*=(I+W) g (I+ W)™,
then

L(%W) = (2r)? | W |- S S etr ( —-%—Z’Z—%V'V) :
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+ Cn(Pr(Z—VW'THZ-VW'Y}

« Coof( Py Z®*Z')dZ4V .
Making the transformation V=H,(V'V)"*, H=[H,, H;] € O(p), we have
PV=H1-H.1/ ’ P’V:HzHﬂ’ ’ and

Lr,n(% W) = (271:)'?«/2| W |-» S S S etr (— % 7Z'Z — % Vlv>| 174274 |<p—q-1)/2

- Chl{lH!Z—(V'V )W\ TH H! Z — (V'V )*W 1Y)
- Co HIZU*Z'Hy)dZA(V'V)dH

where dH is the invariant Haar measure on O(p). Putting

s (213

the integral is decomposed into three factors,
L, (W[2)=(2x)-»| W |-?" S etr (— V'V[2)| V'V [ s-rd(V'V)
- S etr (— X! X,/2)Cro( X XiTH)A X,
| etr (— X X2C ALK~ (VYW g
AXi—(V'V) WYY 1dX, .

Using Constantine’s [2] result on the Laplace transform of a zonal polyno-
mial, and Hayakawa’s [9] definition of the polynomial P(T, A), we obtain

L,,,(%W) =2'+‘<£%l>‘|W|‘P”C[,](¢'*) S etr <—%V’V>|V'Vl<p—q—n/z

AP vy wH ) y)

P. may be expanded in terms of a class of invariant polynomials
C3(X, Y) with two matrix arguments using equation (4.2) of Davis [6].
Thus finally

@ fin)-rldar(g) (730

P y—

r
=0\ g

-p/2
2w | " @+ Wy
-

5. Inversion of the Laplace transform

The asymptotic expansions of Fujikoshi and Nishii [7] assumed that
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1 xx-6=00),
m

where m=n—p—1. Thus we require to invert L, (W/2) to obtain an
asymptotic expansion of {,, for large values of U/U,=m®*BQ-'B'6,
noting also that T=m"'0"2z%'0\2,

Considering first the moments of g, it follows from Davis [6] equa-
tion (6.19) that for W<,

R It

-n{3e(259) 3

CI TS 05 Co (=W, T)k!

k=0 & ¢€x-s

where 03*=C3%(I, I)/C,(I) and for a partition ¢=[f), fo,- -+, fol, fiZfi
- 2 f,20,

@AWY

-p/2

w

—tim (B _ (A= =/ 1.
=l e =1 H( )fm

2
which is zero if f;=2. The notation “¢ ¢ k-s” means that the irre-
ducible representation [2¢] of the real linear group of nonsingular ma-
trices occurs in the decomposition of the Kronecker product [2x]®) [2s]
into irreducible representations.
Formally inverting (5.1) by the analogue of Constantine [3] equa-
tion (10) for invariant polynomials, we obtain the asymptotic expansion

of p*=Ej[y] for large m,

62) w~2(229) S5 5 2(LE=R) e Uiv, k!

8k=0 s ¢€xs 2

~2.<p q> SIS 2k<q+; p)¢¢0,,

2 8k=0 « gEcs

;,s((@l/ZBQ-—lBIGI/Z)—l’ e—lﬂiilg—l/Z)/mk%sk!=O(m—s) .

The question arises as to the validity of this procedure, which in-
verts an expansion of the Laplace transform for small argument to yield
an asymptotic expansion of the required function for large argument.
In particular, Constantine’s result has only been derived for k,<(p—q
+1)/2, where k=[k,, ks,---, k,]. In the univariate situation, the pro-
cedure may be justified under certain conditions by Watson’s lemma
for loop integrals (Davies [5], Section 6.3). A multivariate extension
for this result is obviously highly desirable, but remains to be proved.

An alternative approach is to note that in virtue of its product
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form, L,, may be regarded as the limit as 8—0 of the Laplace trans-
form of the convolution (Constantine [2]).

cetr (—LZ)| P-4 rC(BZMZ

The expansion (5.2) may be derived from (5.3) by a similar procedure
to Constantine and Muirhead [4], Theorem 3.2. It should of course be
observed that the integral (5.3) is convergent only for g>(g—1)/2, but
it is reasonable to argue that (5.2) holds by analytic continuation.

It is difficult to give an explicit expansion of {,, in general, but since
(4.2) may be developed in a series of Cy¥(W, ¥), the early terms may
be derived by formal inversion. The results agree with those of Fuji-
koshi and Nishii [7], Section 5, Lemma 1. In particular, the tables of
Davis [6] may be used to obtain, to o(m™),

= (p—q)F0"5——; (p—q)(p—q— ¥ (6B B'6) 'z
m m
+—5 (p—9)(P—q—D[(P—g—2)¥'(6B2BOBL"B6) "z
_%(6B2-'B'8)"'%-tr (BR'B'67Y)] ,
G4  F=r (- E—g+DFE Y 2 (r—0)(p—+2)
m? m
- (p—q—1)¥'(6BL'B'6)'%-567'% ,

F=Lr-00-+)@-g+o@eDy.

6. Percentile expansions

From (3.5) writing v,=p—gq, v;=n—(p—q)+1, we have

P {:_jég F| =0, (F)+8,,.(F)
|-LF +‘§‘{£" »,(»14-(;33:2-)5;/»%) [ +otm™

Using (5.4) and the general inverse expansion of Hill and Davis [10]
we obtain for the upper a-point of R.

n—(p—g)+1 R,:F;,,{1+_1_§'9"5——1—2(p—q—1)
(p—q) m "
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- 5'(939-13'@)-15} Fo(m-)
where F| ,=F,_ ;. p-p+(2). Hence

61 =@-0t+lp_p. a"(av)——1—2-(p—q—l):c’(@B.Q"B’@)“x}
»—q) m
+o(m™?) ,
where o*(x) was defined in (2.3). The unknown parameters B and 2
occur in the O(m~?) term; which vanishes when p=qg+1. In practical

use, they may be replaced by their estimates. Equation (6.1) may be
compared with the approximation suggested by Williams [13],

R=PFL b (@) Fygmopei(e) -
b—q

Similarly, from (3.6),
P{24<F| =0, . (F)+4, [ F(i-L)+F(L-12)
e {% <—]2; ZZ—%> B 4”2(”1:22()123111231/1’2)17) }]
+o(m™) ,

where v,=q, v;=n—p+1. To o(m™2),
3=—1-qi’@“%+—,:7(p—q){—qi’@“£ +(p—q—1)Z'(6BR7'B'6)"'%} ,
m
}2_—_?11;(1@-[—2) (#6°'%),
1 1 1 ~1 -1
d=——((—q)+— -9 (p+2—-7'67'7) ,
m m
3*=%(p—q)(p—q+2) ,
d=11=-L qp—qwoz,
m
and we obtain from the inversion formula
62  2PHQ-F [¢@)+-E -0+ (-0
q m m

. {x’8‘1x+—;-q(17,,,—3)+ (p—'g—-l)
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- /(6BYB'6) s} | +o(m ),
where F,,=F, ,_,.(a¢). Williams [13] gave
22ELQ AP

Equation (6.2) reduces to the exact result for 7° when p=¢q, and
is simpler in form than Fujikoshi and Nishii [7] equation (4.10). Again,
the unknown parameters occur in the O(m~?) term, and may be re-
placed by their estimates for the construction of confidence regions.

When @ and B are known, let @* denote the statistic @ with %

and B replaced by a and B, respectively. Corresponding to Fujikoshi
and Nishii (equation (3.4)) it may be shown that

Table 1. Comparison of approximations to 7@} for a=0.05, 0.01

p g n | FUikoshi- gy 63  Ean. (6.9) Exact
4 1 20 6.250 6.265 6.161 6.237
11.898 12.082 11.626 11.918

35 4.985 4.985 4.963 4.982
9.036 9.056 8.971 9.040

2 20 9.530 9.547 9.445 9.489
16.302 16.570 16.073 16.297

35 7.675 7.676 7.657 7.668
12.458 12.487 12.403 12.455

8 2 20 17.720 17.984 17.114 17.386
31.291 34.626 30.135 31.548

35 10.217 10.229 10.141 10.193
16.761 16.954 16.553 16.792

4 20 25.849 26.263 25.583 25.176
42.357 42.202 41.889 42.021

35 15.520 15.532 15.509 15.467
23.384 23.642 23.280 23.374

6 20 31.072 31.245 31.051 30.347
49.149 53.126 49.211 48.538

35 19.614 19.606 19.650 19.552
28.347 28.538 28.347 28.313

The upper figures are for «a=0.05 and the lower figures are for
a=0.01.
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6.3 2= p+1Q* [+‘p ‘1>+ (p— q){ o(Fy— 3)_1}]
+o(m™?) .

As shown in Table 1, the approximation (6.3) is generally less ac-
curate than Fujikoshi and Nishii’s result, obtained from their Table 1.
However, the O(N~') approximation

(6.4) n— p+1Q*~n q+1
q n—p+1

2,a

obtained by reexpressing (6.3) as an expansion in (n—p+1)7!, is very
simple in form. It is considerably more accurate than Fujikoshi and
Nishii’s O(m™) approximation, and sometimes performs better than their
O(m™) result. An approximation for ¢ '(n—p+1)Q, may be obtained
by multiplying (6.4) by (14+N"!) and adding the terms involving « in
(6.2).
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