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Summary

This paper presents a systematic basis for studying orderings of
bivariate distributions according to their degree of positive dependence.
The general concept of a positive dependence ordering (PDO) is intro-
duced and its properties discussed. Based on this concept, a new order-
ing of bivariate distributions according to their degree of total posi-
tivity of order two (TP;) is presented, and is shown to be a PDO.
Properties of this TP, ordering are derived and numerous applications
are presented.

1. Introduction

Two random variables X and Y are said to be positively dependent
if either random variable being large probabilistically indicates that
the other random variable is large. This concept of positive depend-
ence has played a fundamental role in many recent new ideas in sta-
tistics. It has led to a number of different concepts including meas-
uring the degree of positive dependence, describing the properties of
the positive dependence, and relating the degree of positive dependence
between two pairs of random variables. Much of the research in these
areas is concerned with specifics and very little attention appears to
be directed to organizing and unifying the various developments. In
this paper, we provide a framework for examining and further devel-
oping the fundamental concept of one pair of random variable’s being
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more positively dependent than another pair. The development of this
framework is also related to the more widely considered area of prop-
erties of positive dependence. Numerous examples and applications are
discussed.

The research concerning various specific positive dependence pro-
perties has been fairly recent, but explosive. Some early concepts
that were developed include positively quadrant dependence (PQD)
(Lehmann [25]), association (Esary, Proschan and Walkup [11]), posi-
tively regression dependence (Tukey [43]), and TP, (e.g., Karlin [20]).
More recently developed ideas include dependence by total positivity
of degree (m,n) (Shaked [36]), right corner set increasing (Brindley
and Thompson [6]) and some weakened notions of association (Shaked
[38]). The implications among many of these properties have been
studied, e.g., Barlow and Proschan [3], Shaked [37], and Block and
Ting [5].

In the last several years, a new and fundamental approach to
studying positive dependence has been started. The basic idea is to
compare two bivariate distributions having the same pair of marginals
to determine whether one distribution is more positively dependent
than the other, thus attempting to partially order the distributions
according to degree of positive dependence. The task is a difficult one
in that the suitable comparability conditions are often difficult to obtain.
Some specific examples of such orderings are: (a) Tchen’s [42] more
concordant ordering (see also Ahmed, Langberg, Léon, and Proschan’s
[1] positively quadrant dependence ordering), which measures the direc-
tion of increasing positively quadrant dependence; (b) Rinott and Pollak’s
[31] covariance ordering ; and (c) Shaked and Tong’s [39] orderings for
multivariate exchangeable random variables.

Little work has yet been done in developing a framework of con-
ditions (such as the work of Rényi [30] and Hall [17] for numerical
measures of dependence) for orderings of bivariate distributions, al-
though Secarsini [33] presented a class of axioms for measures of con-
cordance. Yet the idea of ordering bivariate distributions by positive
dependence is a fundamental concept for studying the notion of posi-
tive dependence. In this paper, we develop the general concept of a
positive dependence ordering and study its properties. Using this con-
ceptual framework, we introduce and develop a new TP, positive de-
pendence ordering for comparing bivariate distributions. The relation-
ships of this new ordering to the more positive quadrant dependent
ordering is discussed. Various interesting applications of the TP, or-
dering are presented, including applications to bivariate extreme value
distributions.
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2. Positive dependence orderings

In this section the concept of a positive dependence ordering is
introduced. While there could be other ways for this concept to be
defined, we find it useful to adopt the following definition.

DEFINITION 2.1. A relation € on the family of all bivariate dis-
tributions is a positive dependence ordering (PDQO) if it satisfies the
following ten conditions :

(P0) F«G= F(x, 0)=G(x, o) and F(co, y)=G(c0, ) ;

(P1) F«G= F(x,y)=G(z,y) for all =, y;

(P2) F«G and GKH= FKH;

(P3) FKF;

(P4) F«G and GKF= F=G;

(P5) F-«F«F*; where F*, the upper Fréchet bound, is given
by F'*(x, y)=min [F(z, o), F(c0, y)] and F'~, the lower Fréchet
bound, is given by F~(x, y)=max [F(x, )+ F(c, y)—1, 0];

(P6) (X, Y)«(U, V)= (f(X), Y)<(f(U), V) for all increasing func-
tions f, where the notation (X, Y)«(U, V) means that the
relation « holds between the corresponding bivariate distri-
butions Fy, of (X,Y) and Fy,, of (U, V), i.e.,, Fry<Fyy;

P X, V)(U, V)= (-U,V)K(—-X,Y);

P8) (X, Y)<(U, V)= (Y,X)x(V,U);

(P9) F.«G, F,—F, G,—G= F«G, where F,, F, G,, G all have
the same pair of marginals and — denotes convergence in
distribution.

If FKG, F is said to be less positively dependent than G. Often
we write G>F and say that G (or a pair of rv’s whose distribution is
G) is more positively dependent than F' (or a pair of rv’s whose distri-
bution is F').

While the relation « is defined on the entire family of bivariate
distributions, Property (P0) expresses the condition that only bivariate
distributions having the same pair of marginals are compared for posi-
tive dependence. We show below how the definition can be extended
to allow the comparison of bivariate distributions not having the same
pair of marginals. Property (P1l) indicates (by using (P0)) that any
positive dependence ordering must satisfy the basic intuitive concept
that given that X is large, Y is more likely to be large under G than
under F. Properties (P2), (P3) and (P4), respectively, are the standard
transitivity, reflexivity, and antisymmetry properties characteristic of
all partial orderings. Property (P4) additionally is important because
by itself it typically eliminates “ unidimensional” orderings such as
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“F«G if and only if m(F)<m(G)”, where m is a scalar-valued measure
of positive dependence.

The upper Fréchet bound is the most positive dependent distribu-
tion possible (see Fréchet [13], Dall’Aglio [9], and Kimeldorf and Sampson
[24]) and the lower Fréchet bound is the least positive dependent dis-
tribution. Hence, the upper (lower) Fréchet bound should be more
(less) dependent than every comparable distribution. This requirement
is expressed as Property (P5). Property (P6) is a weak monotone in-
variance requirement, in that ordered distributions remain ordered after
monotone scale transformations on one of the variables. Requiring in-
stead invariance with respect to one-to-one functions changes the mean-
ing of the ordering and leads to serious difficulties (see Kimeldorf and
Sampson [24]), and requiring invariance only with respect to increasing
linear functions is too weak. Intuitively, if (U, V) is more positively
dependent than (X,Y), then (—U, V) is more negatively dependent
than (—X, Y), so that (—U, V) is less positively dependent than (—X,
Y). This property is expressed as (P7). Also, (P6) along with (P7)
permits the discussion of decreasing functions. Property (P8) is a sym-
metry condition, and (P9) requires continuity with respect to weak
convergence. Note that Properties (P6), (P7) and (P8) yield

2.1) X, Y)(U, V) = (f(X), (Y)L(F(U), 9(V))

for f, g both increasing or both decreasing.
The following examples provide illustrations of PDO’s.

Example 2.1. PQD Ordering. Tchen [42] defines a bivariate dis-
tribution G to be more positively quadrant dependent (PQD) than a bi-
variate distribution F' having the same pair of marginals if G(x, y)=
F(z, y) for all (z,y) € R} in which case we write F<;enG; alternative-
ly, G is said to be more concordant than F. Fréchet [13] showed (see
also Johnson and Kotz [19], pp. 22-23) that (P5) holds, while the re-
maining properties are obviously satisfied. Hence, the PQD partial
ordering is a PDO.

Example 2.2. Fréchet Ordering. The following trivial ordering is
a PDO: F<«yG if and only if F=G or G(F') is the upper (lower)
Fréchet bound with the same marginals as F(G). It is obvious that
&w is an extreme PDO in the sense that for any other PDO « we
have F«yG= F«G.

Example 2.3. A TP, PDO. Let I, and I, be real intervals. We say
I<1, if and only if «, €I, and x, ¢ I, imply 2,<x,. Let F and G be bi-
variate distributions with the same pair of marginals. The distribution
G is more TP, than F, written F«,G, if for all intervals I,<1I, J,<J;,
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(2.2)  F(L, J)F(L, )G, J)G(Ly 1) =G(L, J)G(L, J)F(L, J)F(L, Jy)

where F(I,, J;) represents the probability assigned by F to the rectangle
I xJ,. In Section 4 we shall prove that the ordering <, is, in fact,
a PDO.

Note that if F} is the independent distribution having the same
pair of marginals as a distribution F', then F,«,F if and only if

(2.3) F(,, J)F(L, JyzF(L, J)F(L, J)) .

In fact, Block, Savits and Shaked [4] define F' to be TP, if and only
if inequality (2.3) holds. In the case that F has density f with respect
to some product measure, it is easy to verify that (2.3) holds if and
only if the function f is TP, in the ordinary sense. The observation
that F is TP, if and only if F,«,F motivates our calling <, a TP,
ordering. Further properties of the «, ordering will be discussed in
Section 5.

Other authors have introduced orderings, apparently measuring
positive dependence, for specific classes of bivariate random variables
(e.g., Shaked and Tong’s [39] ordering for exchangeable random vari-
ables). Because of the specificity of these orderings, the concept of
a PDO does not appear to be directly applicable. The definition of
a PDO can be extended to allow the comparison of all continuous bi-
variate distributions, including those not having the same pair of mar-
ginals. To do so, consider the copula (Sklar [40]) or untform represen-
tation (Kimeldorf and Sampson [23]) U, of a continuous bivariate dis-
tribution F' defined by

Ue(z, y)=F[F'(x), Fi'(y)], O=sz=sl, O=sy=l,

where F(x)=inf {t: Fi(t)=«} and F, and F, are the marginals of F.
The bivariate distribution U, has uniform marginals on (0, 1) and the
“same dependence structure” as F. If F and G are continuous bi-
variate distributions and « is a PDO, define the relation «* by

Fg*@G iff Uz« Us;.

It is clear that the relation «* satisfies (P2), (P3), (P5), (P6), (P7), (P8),
(P9), and

(P4)* F<<*G and G<<*Fé UF= UG .

(Mardia [26] discusses in some detail the situation where Uy=Usg, i.e.,
F and G are translates of each other.) Note that if F and G have
the same pair of marginals, then F«G if and only if F«*G. Thus,
a PDO « induces an extended PDO «* defined on all continuous dis-
tributions. This extended PDO satisfies (P1) through (P9) with (P4)
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replaced by (P4)* and (P1) replaced by
PL* Fg*G= Ug(x, y)S Uy(x, y) for all z, y.

Where ambiguity is unlikely, we write « in place of «*. The con-
cept of using copulas or uniform representations to compare bivariate
distributions with different pairs of marginals was also considered by
Scarsini [33] for the PQD ordering. Scarsini also considered the prob-
lem of comparing the concordance of pairs of discrete bivariate dis-
tributions.

In studying the dependence structure of a family of fixed-marginal
bivariate distributions indexed by a real parameter it is natural to in-
quire whether the bivariate distributions are more positively dependent
according to some PDO as the parameter increases. For example, Ahmed
Langberg, Léon and Proschan [1] discuss families of bivariate distribu-
tions that are increasingly PQD as the parameter increases. They
show that the family of Marshall-Olkin bivariate exponential distributions
(with suitable constraints) and the Farlie-Gumbel-Morgenstern family
(see (5.3) below) are PQD ordered. Slepian [41] showed that the stand-
ardized bivariate normal family is PQD ordered by p, and Das Gupta
et al. [10] obtained similar results for elliptically symmetric families.
Also, the bivariate logistic family of Ali, Mikhail and Haq [2] can be
shown to be PQD ordered. Section 5 below considers families which
are TP, ordered.

3. Alternative properties

In evaluating which properties should define a PDO, a larger num-
ber of possible properties were considered. Among those which were
excluded, three warrant discussion.

DEFINITION 3.1. A PDO « has the generalized monotone invariance
property if for independent pairs (X, Y)), (X; ), (U, Vy), (U, Vy) of
rv’s and increasing functions f and g
3.1) (U, V)K(X, YY) and (U, V)< (Xe, Vo) =

(f(U, To), 9(Vy, Vi) K(f(X1, X), 9(Y4, X))

This condition is substantially stronger than (P6) and implies the
special case of a type of closure under convolution. Let f(s, t)=g(s,t)
=s8+t, so that (3.1) reduces to

(8.2) F,«G, and Fy;<G,= F}*F,«KG¥G,,

where * denotes convolution.
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Ahmed, Langberg, Léon, and Proschan [1] show that the PQD PDO
satisfies (3.2) ; moreover, as we now show, it also satisfies the stronger
condition (3.1).

THEOREM 3.1. The PQD PDO has the generalized monotone in-
variance property (3.1).

We first prove the following lemma.

LEMMmA 3.1. Suppose (U, V) <<PQD(X, Y) ; (Zu Zz): (-Xr Y)r a,nd (U’ V)
are independent pairs of rv’s; and f: R*—> R and g: R*— R are in-
creasing. Then (f(U, Zy), 9(V, Z:)) <reo (f(X, Z,), 9(Y, Zy)).

ProOF. By the monotonicity of f and g, the set {(u, v): f(u,2)=
a, g(v, 2)<b} is a lower rectangle and hence

Pr[f(U, Z)sa, oV, Z)sbl=|[ PrIf(U, )0, oV, 2)SbldH(, 2)

> SS Pr[f(X, z)<a, 9(Y, 2)<bldH(z, 2)
=Pr[f(X, Z)<a, o(Y, Z)<b],
where H is the cdf of (Z,, Z,).

Proor or THEOREM 3.1. Assume that the left hand side of im-
plication (3.1) holds and fix increasing functions f and g. Define f'(s, t)
=f(, s) and ¢'(s, t)=g(t, s). Apply the lemma to deduce that (f(X,, X,),
9(Y,, Yy) is more PQD than (f(U,, X), 9(V1, Xo))=(f"(X, U), 9'(Xs, V1)),
which by Lemma 3.1 is more PQD than (f'(U,, U), ¢'(V:, V))=(f(U;, Uy),
g9(Vy, V).

The following example shows that the TP, PDO of Example 2.3
does not satisfy (3.2) and, a fortiori, does not have the generalized
monotone invariance property (3.1).

Example 3.1. Let G, be a distribution with probability function g,
such that ¢,(2, 1)=1/3, g.(4, 3)=4.(6, 5)=2/9, 9:(4, 5)=g.(6, 3)=1/9, gi(x, ¥)
=0 elsewhere. Let G, be a distribution with probability function g,
such that g,(2, 1)=1/3, g2, 2)=043, 3)=1/4, 9x(2, 3)=g4(3, 2)=1/12, gy(x,
9¥)=0 elsewhere. Let F, and F, be the distributions of independent
rv’s having the same respective marginals as G, and G,. Then it is
easy to verify that (3.2) is violated.

DEFINITION 3.2. A PDO « has the mixture property if
(3.3) F«G= F«aF+(1—a)GKG for 0<a<1.
It is clear that thé PQD PDO satisfies (3.3). On the other hand,
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the TP, PDO fails to satisfy (3.3), as is shown by the following ex-
ample: Let S={1,2,3} and let G assign mass 1/3 to each of the
points (1, 1), (2,2), (8,3). Let F assign mass 1/9 to each of the nine
points in Sx S. The distribution H=(F+G)/2 assigns mass 2/9 to (2, 2),
but assigns mass 1/18 to each of (2,1), (3,1) and (3, 2); hence, it is
not the case that F'«, H.

Let F'(p) denote the standardized bivariate normal distribution with
correlation p.

DEFINITION 3.8. A PDO « has the normal-agreeing property if
(3.4) F(p,)< F(p,) if and only if p;=<p;.

This property requires essentially that the bivariate normal dis-
tribution be well-ordered by p. An analogous property for numerical
measures of dependence was included by Rényi [30], Schweitzer and
Wolff [35], and Scarsini [33]. While there are obvious merits in in-
cluding the normal-agreeing property as part of the definition of a
PDO, we feel it is too restrictive by placing an undue emphasis on
normality. (For instance, why not focus on elliptically symmetric dis-
tributions ?) Note that the PQD PDO has the normal-agreeing proper-
ty (see Slepian [41]), but the Fréchet PDO (Example 2.2) does not have
the property. It is not known whether the TP, PDO has the normal-
agreeing property.

4. The TP, PDO

In this section the new ordering «, defined by (2.2) is proved to
be, in fact, a PDO. It is interesting to note that Kemperman [22] as
well as Karlin and Rinott [21] suggested an ordering, which could be
viewed as related to total positivity of order 2 in pairs. This ordering,
which we denote by <«xxgr, is defined as follows: F<«gxxG if F and G
have densities f and g, respectively, with respect to the same product
measure for which

(4.0) g(max (z,, Z,), max (¥, ¥»)).f(min (2, &), min (y;, ¥»))
= f(x1, y1)g(22, Y2)

for all real x,, ,, %, %.. Since the total positivity of order 2 (TP,) of
the density function is a positive dependence property and (4.0) can be
viewed as a TP, like inequality, it might be conjectured that (4.0) can
serve as a means of comparing the degree of total positivity of order
2 for two distributions with the same pair of marginals. However,
the partial ordering <«xzrz obviously does not have Property (P7) and
less obviously also fails (P5). Thus, this partial ordering is not a PDO.
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THEOREM 4.1. The TP, ordering is a PDO.

The proof consists in showing that «, satisfies (P1) through (P9).
Properties (P3), (P7) and (P8) are obvious. The others are considered
in the following lemmas. For notational convenience F(I, J;) in (2.2)
is denoted by F'(7, j).

LEMMA 4.1. F«,;G and G« H vmply F«, H.

Proor. Fix I,<I, and J,<J;. Hence,
4.1) FQ1, 1)F(2, 2)G(1, 2)G(2, 1)<G(1, 1)G(2, 2)F(1, 2)F (2, 1)
and
(4.2) G(1,1)G(2, 2)H(1, 2)H(2, 1)< H(1, 1)H(2, 2)G(1, 2)G(2, 1) .

If G(1, 1)G(2, 2)G(1, 2)G(2, 1) >0, multiplication of inequalities (4.1) and
(4.2) yields

(4.3) F(1,1)F(2, 2)H(1,2)H(2,1)<sH(1, 1)H(2,2)F(1, 2)F(2,1),

and the lemma is proved. Otherwise, there are three cases.

Case 1. Assume G(1, 1)G(2, 2)>G(1, 2)G(2, 1)=0. Then (4.2) implies
H(1, 2)H(2, 1)=0 and, hence, (4.3) holds.

Case 2. Assume G(1, 2)G(2, 1)>G(1, 1)G(2, 2)=0. Then (4.1) implies
F(1,1)F(2, 2)=0 and, hence, (4.3) holds.

Case 3. Assume G(1, 2)G(2,1)=G(1, 1)G(2, 2)=0. Assume without
loss of generality that G(1,1)=0 and G(2,1)=0. Let I, be any inter-
val for which Lcl,, I,<IL, and G(2,1)>0. (If no such I, exists a
similar argument can be applied to an interval I, for which I,c1l,., I,
=<I and G(1’,1)>0. If neither such I, nor I, exists, then G(R, J,)=
0, and hence (since F' and G have the same marginals) F'(1, 1)< F(R, J)
=G(R, J,)=0, so that (4.3) holds.)

Case 3A. Assume G(1,2)>0. Then we have G(1,1)=0, G(2',1)>
0, and G(1,2)>0. Thus, (4.1) implies 0=F(1, 1)F(2', 2)=2 F(1, 1)F (2, 2).
Therefore, (4.3) holds.

Case 3B. Assume G(1,2)=0. Expand J, or J, to get either G(1, 1)
>0 or G(1, 2')>0.

Case 3B1. Assume G(1,2)>¢0. Then we have G(1, 1)=0, G(1, 2"
>0, G(2',1)>0. Thus, (4.1) implies 0=F(1,1)F(2,2)=F(1, 1)F(2, 2).
Therefore, (4.3) holds.

Case 3B2. Assume G(1,1’)>0. There are two cases:

Case 3B2a. Assume G(2/,2)>0. Thus, G(1, 2)=0, G(1,1)>0, G2,
2)>0. Thus, (4.2) implies 0=H(1,2)H(2',1")=2H(1, 2)H(2,1). There-
fore, (4.3) holds.

Case 3B2b. Assume G(2',2)=0. Then we have G(2/, 2)=G(1, 2)=
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0, G(1,1)>0, G(2,1)>0. As before, we expand I, or I, either to get
G2, 2)>0, G2",1)>0, G(1, 2)=0, G(1,1)>0, in which case (4.2) im-
plies (4.8), or to get G(1',2)>0, G2, 2)=0, G(1',1')>0, in which case
(4.1) implies (4.3).

LEMMA 4.2. F<«,;G and G« F imply F=G.

PROOF. Assume F and G are not identical. Then there exists
(x,y) for which F(zx, y)+#G(x,y). Without loss of generality, assume
F(z, y)<G(x,y). Let L=(—o0,u], L=(x, ), Ji=(—o0,yl, ;=(y, ).
Thus,

(4.4) F(1,1)<G@1,1).
Since F and G have the same marginals, we have
(4.5) G2, 1)<F(21),
(4.6) G@1,2)<F(1,2),
4.7) F(2,2)<G(?2,2).

Multiplying (4.4), (4.5), (4.6) and (4.7) yields a contradiction to GKF.
LEMMA 4.3. F<«&,G= F(x, y)<G(x, y) for all =, y.

"~ PrROOF. Suppose for some (z,y), F(x, ¥y)<G(x,y). Then using the
notation and techniques of the proof of Lemma 4.2, we conclude that
(4.4) holds and, hence, that (4.5), (4.6) and (4.7) hold. Multiplying
these four inequalities contradicts the assumption that G« F'.

LEMMA 4.4, F-& ,F«& . F*.

Proor. Fix I,<I, and J,<J,. Since F'* assigns mass 1 to some
increasing function and F~ assigns mass 1 to some decreasing function,
F+(1,2)F+(2,1)=F~(1, 1)F~(2, 2)=0.

LEMMA 4.5. For all increasing functions f, (X, Y)&(U, V) wm-
plies (f(X), Y)<r (f(U), V).

Proor. Fix LI, J,<J, and fix f. Define f~(L)={x: f(x) € L}.
Thus, f-'(I)<f-(L) and Pr[f(X)eL, YeJ,]=Pr[Xe f(I), YeJ;] and
Prf(U)el, VeJ,]=Pr[Ue f7(L), VeJ,. The result follows.

LEMMA 4.6. If {F,} converges in distribution to F, {G,} converges
in distribution to G, F, &G, for all n, then F<,G.

PROOF. Let S denote the subset of R® at which both F and G are
continuous. For rectangles IxJ whose corners belong to S, F (I, J)—
F{,J) and G, (I,J)— G, J), since F and G assigns zero probability



POSITIVE DEPENDENCE ORDERINGS 123

to the boundary of IxJ. Hence, (2.2) holds when I, I, J,, J, are such
rectangles. But since S is dense in R? and F and G are increasing
functions, (2.2) holds everywhere.

5. Properties of the TP, PDO and examples

Lemma 4.3 shows that the TP, PDO is stronger than the PQD
PDO; ie., F&r F'= F<pgn F'. However, for the class of 2x2 con-
tigency tables with fixed marginals, the PQD and TP, PDO’s are identi-
cal: F<ppF' & F& F' < py<pl, where p,, and p, are the respective
probabilities of the (1, 1) cell under F' and F’. For larger contingency
tables the PQD and TP, PDO’s obviously cannot coincide, because there
are tables which are PQD, but not TP,. For example, Let F; be dis-
tributed on {0, 1, 2} x {0, 1} as follows: f,(0,0)=.3—3, f,0,1)=.2+3,
f(1,0=.1, f,1,1)=.15, f,(2,0)=.1+3, and f,(2,1)=.15—3. Then for
all 8, 0<3<.025, F, is PQD, but not TP,.

Note that if F and G have respective densities f and g with re-
spect to some product measure, then F'«,G clearly implies that

(6.1)  f(yy Y025 Y2)9(1, Y2)9(2) Y1) S G(01, Y1)G(%2, Y2) I (X1, Y2) F (T2 Y1) »

whenever z,<x, and ,<%,. Suppose now in addition that 9*f(x, y)/oxdy
and 9%g(x, y)/oxdy both exist. Then (5.1) is equivalent to

(5.2) fi4,~g'4,20,
where

2
4,=5-0f O oF
oxdy oJx 0y

and 4, is defined similarly. (This result follows from the standard
differential version of TP,; see Karlin ([20], p. 11).)

It is interesting to note that if f and g are standardized bivariate
normal densities with correlations p, and p,, respectively, where —1<
01<p:<1, then (5.1) is satisfied. To verify this assertion, note that
9(x, y)/f(x, y) is proportional to a(x)b(y) exp [K(py, p:)wy], Where K(p;, py)
=p,(1—p3) '—p,(1—pj})"!, and @ and b are positive functions of z and y,
respectively, for all p, and p,; since K(p,, p)=0, it follows that g/f is
TP,.

For any pair F' and G of continuous univariate cdf’s, consider the
following family of bivariate distributions studied by Farlie [12], Gumbel
[15] and Morgenstern [28]:

(6.3) F(z,9;0)=F@)G@){1+a[l-F@)1-G®)]}, —lsesl.
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Ahmed, Langberg, Léon, and Proschan ([1], Example 3.2.3) show that
if 0<a,<a;<1, then F(x, y; a)<pqo F(, ¥; a;). We now show the fol-
lowing stronger result:

THEOREM 5.1. For the Farlie-Gumbel-Morgenstern family a,<a,
implies that F(z,y;a) <, F(z, y; a,).

ProoOF. By Properties (P6) and (P8) it is sufficient to consider the
case when F' and G are uniform distributions on (0, 1), in which case
Sf(=,y;a)=14+a(2x—1)(2y—1) and 4,,=4a. Furthermore, if I is the
interval (x,, ;) and J is the interval (y,, %), then in the notation of
(2.2)

F(, J)=(x;— 2 )(y.—y)[1 + a2, +2,— 1)y +y.—1)]
=2, —2)(Y—y) S (Z, ¥) »

where Z=(x,+2,)/2 and ¥=(y.+%,)/2. Thus, (2.2) is equivalent to (5.1),
which is equivalent to (5.2), the left hand side of which reduces to
4(a;—a,)[1—a,a,(2z2 —1)*(2y — 1)1 20.

One of the more interesting questions concerning the PQD PDO
that has been addressed by several authors is to determine the class
I' of functions & of two variables for which

(X, Y)<roo(U, V) & E[WX, Y)ISE[MU, V)]  for all kel .

Under certain regularity conditions, I" consists essentially of all funec-
tions & for which ¢*=* is TP,. See, for example, Cambanis and Simons
[7], Cambanis, Simons and Stout [8], Riischendorf [32] and Tchen [42].
The same question can be raised for any PDO. In particular, it would
be interesting to determine the class I’ for the TP, PDO. Although
we have not been able to determine I, one can at least conclude by
Lemma 4.3 that I'crI".

6. Applications to extreme value theory

We now consider some applications to the study of dependence
properties for bivariate extreme value distributions. A general sum-
mary of the results for multivariate extreme value distributions is
given by Galambos [14] and a recent presentation of some positive de-
pendence properties of multivariate extreme value distributions is given
by Marshall and Olkin [27]. Our discussion of this material leads us
to generalize a result of Marshall and Olkin, for the bivariate case.

LEMMA 6.1. For 1=1,2, suppose (X, Yu), -+, (Xin, Yin) are id
having bivariate cdf F,, where F, and F, have the same pair of mar-



POSITIVE DEPENDENCE ORDERINGS 125

ginals. For i=1, 2, le¢ W™=max X,;, Z{"=max Y,;,, A”=min X,,, and

1Sjsn 1sjsn 1sjsn

Br=minY,. If Fi<F, then for all n, (W, Z™) (W, Z) and

1sjsn

(A, B{) K (A, B{™), where < 1is either of the PDO’s <pqp or <.

PrROOF. The cdf of (W, Z™) is F, and Fi<F; clearly implies
that F« F}? for the PQD and TP, orderings. The results for (A{, B{™)
follow from (2.1).

COROLLARY 6.1. Suppose (W™, Z™) and (W™, Z{”) each comverges
to an extreme value distribution, where the corresponding limiting rv's
are denoted by (W,, Z,) and (W,, Z,), respectively. If F\&F;, then (W, Zy)
K (W, Z;), where < 1is either of the PDO’s <pep Or 7.

PrOOF. By Lemma 6.1, F, < F;, implies that (W™, Z™) < (W™, Z{™)
for all n, which by (2.1) implies that for all n

(6.1) (@, WP +b,, c.Z"+d,) (@, W +Dd,, ¢.Z{"+d,),

where a,>0 and ¢,>0. To complete the proof, note first that the con-
stants which provide the limiting extreme value distribution are the
same because F; and F, have the same pair of marginals. Note second
that in showing that the PQD and TP, PDO’s satisfy (P9), it was not
necessary to assume that the marginal distributions did not vary with =.

Similar limiting results apply to (A, B™). If F and G are bi-
variate extreme value distributions, then F’G'~* is a bivariate extreme
value distribution for 0<pB<1. (See Gumbel and Goldstein [16] or
Johnson and Kotz ([19], p. 251).) Suppose for ¢=1,2 that F; and
G, are extreme value distributions, that F), F, have the same pair of
marginals, and that G,, G; have the same pair of marginals. Clearly
for the PQD and TP, PDO’s if F\< F, and G,«G,, then F/G\*<K F{G;*.

Observe that Corollary 6.1 immediately shows that if the underly-
ing distribution is TP,, then the corresponding extreme value distribu-
tion, if it exists, must be TP,. Marshall and Olkin ([27], Proposition
5.1) show that regardless of the underlying distribution, if (X, Y) has
an extreme value distribution, then X and Y are associated. In fact,
the following theorem exhibits a stronger dependence property for rv’s
having an extreme value distribution.

THEOREM 6.1. If (X,Y) has a bivariate extreme value distribution,
then X and Y are right cormer set increasing, i.e., the survival func-
tion is TP,.

PrOOF. Pickands [29] (also see Marshall and Olkin ([27], p. 173))
has shown that (X,Y) has a min extreme value distribution if and
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only if X=g,(U) and Y=g,(V) for certain increasing functions g, and
g;, Where (U, V) has survival function of the form

G(u, v)=exp {—S: max [tu, (1—t)ldu()

where g is a finite measure on [0,1]. It thus suffices to show that G
is TP,. Observe that for u,<u, v,<v,,

(6.2) In G(uy, v))+1n G(us, v) —In G(uy, v,)—1In G(uy, v,)
1
=So M(t; wy, Uy vy, v)dpe(P)

where

M(t; uy, Uy vy, v))=max [tu,, (1—t)v,]+max [tu,, (1—1t)v]
—max [tu,, (1—t)v,] —max [tu,, (1—2t)vs] .

For 0<t<1, let 4=t/(1—¢t)=0, so that

(6'3) (l_t)_lM(t; Uiy Uy V1, '02)
=max [uf, v,]+max [uf, v,]—max [u}, v,]—max [uf, v,],

where uf=0u,<0u,=wuj. Direct calculation shows that the right side
of (6.3) is nonnegative for u}<u¥, v,<v,. For the case t=1, M=0.
Hence the left side of (6.2) is nonnegative. The derivation for max
extreme value distributions is similar.
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