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Summary

In this paper a new bivariate exponential distribution, arising nat-
urally in the theory of Poisson line processes, is studied. The distri-
bution has some interesting and useful properties which renders it
suitable for use in statistical modelling work. It is presented in the
spirit of adding to the repertoire of bivariate exponential forms. It
joins other models, such as those of Downton (1970, J. R. Statist.
Soc., B, 32, 408-417), Marshall and Olkin (1967, J. Appl. Prob., 4, 291-
302) and Nagao and Kadoya (1971, Bulletin of the Disaster Prevention
Research Institute, 20, 3, 183-215), which have their origins in the the-
ory of stochastic processes.

1. Poisson line processes

Consider a Poisson line process. Recall that such a process is
constructed by first defining a homogeneous Poisson point process on
the cylinder {(p, 6): 0<60<2r, 0<p} and then associating each point
(p, 0) on the cylinder with _(p, #), a line of infinite length on the plane;
p is the length of a line segment drawn from the origin O perpendic-
ular to _L(p, 6) whilst ¢ is the angle that this segment makes with the
xz-axis. See Miles [4], Solomon [7] or Santalé [6] for a description.

Poisson line processes have the property that the intersection of
the random lines with any reference line generates a stationary Poisson
point process (of intensity A, say). Also the number, N(D), of lines
intersecting with any reference domain D is Poisson distributed. In
particular, if D is convex then EN(D)=2/2 L(D) where L(-) denotes
perimeter (Miles [4]).
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Fig. 1. A realization of a Poisson line process to illustrate a point
in the text.

2. Joint distribution and correlation coefficients

Define the random variable R(t) by the distance (OB in Figure 1)
from the origin to the nearest line of the process in the direction of
angle t. Thus we have a family of such variates for fe[0, 2z). For
each ¢, R(t) is distributed exponentially with density Ae™**. Also for
0ga<rn, P{R(t)>xz, Rt+a)>y}=P{N(4)=0}, where 4 is a triangle
with O as one vertex, COA as one angle and side lengths 2 and y along
OA and OC respectively. Obviously (using F' to denote the joint dis-
tribution function of R(t) and R(t+a))

P{R(t)>x, R(t+a)>y}=exp {—-g-(:c+y+«/w’+y2—2wy cos a)}
(1)

F(x, y)=1—e*—e "+exp {——;-(x+y+~/xz+y2—2xy cos a)} .

One can see that R(¢) and R(t+r) are independent. This is consistent
with the fact that they are forward and backward recurrence times
for the Poisson point process on the line passing through AD. Such
recurrence times are known to be independent (Lamperti [2]).

The correlation coefficient of R(t) and R(t+a) can be readily found
using the following formula for non-negative random variables. Here
we use X and Y interchangeably with R(f) and R(t+a).
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=2 S‘“ S"" [exp {—_‘_(m+y+~/xz+y2—2wy cos a)}
o Jo 2

—exp {—1(x+y)}]dxdy

1 a=0;
4 [ l1—cosa 2 ]
—] — 1— 1 0 ;
14cosa 14cosa © l—cosa <a<w
0 a=rx.

Alternatively, one may define a new coefficient of association, »=(1+
cos a)/2, and write p as

p=—1+2[1417 T 10g (1-7)] 720, 721.
7 7

Thus, p runs from 0 to 1 as » runs from 0 to 1, or as the angle a runs
from = to 0. Since p/(y)=2(n—2) log (1—75)/%*>0, p is monotone in » and
hence monotone in a. Thus p¢€[0,1], with p=0 implying that X and
Y are independent. Table 1 shows p(a) for a range of a.

Table 1. Correlation coefficient p(a) for a range of a

a 0 15° | 30° | 45° | 60° | 75° | 90° | 105° | 120° | 135° | 150° | 165° | 180°

oa) 1 .891 | .728 | .571 | .434 | .320 | .227 | .153 | .096 | .053 | .023 | .006 | O

The joint distribution function is absolutely continuous with respect
to (x,y). Thus F has a density. Furthermore this density is also
smooth with derivatives everywhere. The density does however have
a singularity at (0, 0). Figure 2 shows a typical contour plot of the
probability density function, with 2 standardized at 1 and a==/6. Thus
p=.728. Figure 3 shows the comparable contour plot for F.

Writing S* for x*4y'—2xy cos a=(x+y)'—4xy», the joint p.d.f. is

7, 9) =212 gy + SS@+u)+ 2+ + 2ayl] exp [ — L i-+y+5)

for =0, y=0.

In the standard form (1), where X and Y have identical marginal
distributions their means variances are 1/1 and 1/2% respectively. It is
clear, however, that either or both variables can be scaled to have
different means.
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Fig. 2. The contours of the joint probabil- Fig. 3. Contours of the joint distribution
ity density function of X and Y. Here function F, for A=1 and a==/6.

2 has been set at 1 and the angle a set
at 7/6. Note that all contour lines in-
tersect both & and y axes, the points
of intersection being away from the
origin (though often very close).

3. Conditional moments

The regression, let us say of Y upon X, does not take a simple
form. Using S and 7 as before, we can write the conditional distri-
bution function of Y given x, and numerically calculate E(Y|x) and

E(Y*|z) using the formulae E(Y|x)=5: [1-F(y|x)ldy and E(Y:|x)=

2" yl1- Fy|=)dy.
F(y]x)=1~—1—[S+x+?l(1—27i)] exp [—ll(y—erS)] .
2S 2

There are numerical instabilities for very small «, but analytic con-
siderations show that E(Y|2)— (1—cos a)/(22) and E(Y*|z)— (1—cos a)/A®
as x—0. Figure 4 shows the nature of E(Y|x) for =1 and a range
of angle a. Figure 5 shows the conditional standard deviation of Y
given z for a similar range.

4. Joint characteristic function

It is possible to find the joint characteristic function of X and Y.
Denoting Efexp (isX+itY)] by ¢(s, t), we have for a#mr,
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E(Y|x)

1 1 ] 1
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X
Fig. 4. The conditional expectation of Y given X for this bivariate
exponential distribution. 2 is held fixed at 1 whilst values of the
angle a, in degrees, are shown for each curve.

std. dev. Y given x
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Fig. 5. The standard deviation of Y conditional upon x for this bi-
variate exponential distribution. 2 is held fixed at 1 whilst the
angle a is varied.
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where 4(s, -
A—18

¢=%[2z—ﬂz—i(s+t)] :

cz=%[7,212—4pst—-(s—t)2—2i1;x(8+t)] :

When a=n, ¢(s, t)=2}/[(A—18)(1—1t)]. The foregoing formula collapses
to this simple form when a=r and {#0. ({=0 only if a=z and the
real numbers s and t satisfy 4(s’-+%%)=2%)

5. Minimum of X and Y

The minimum of X and Y is also exponentially distributed. From

1)
P{min (X, Y)>z} =exp [——;—22(24-«/2—2 cos a,)]

and so it is easily seen that the min (X, Y) is exponentially distributed
with mean [A1(2++2—2cosa)/2]"'. Indeed the multivariate version of
this distribution enjoys the same property; the minimum is exponen-
tially distributed. The multivariate version is found by considering n
directions instead of 2. If all directions lie within a semi-circle then
(using the n—1 angles a,, a;,---, @,_;) one can show that the minimum
distance to a random line exceeds z with probability

exp [—é—lz(2+"z—}l +v/2—2 cos ai)] .
i=1

If the n directions do not lie within a semi-circle then the minimum
distance exceeds z with probability

exp [—-é-lz é vY2—2 cos a‘] ,
i=1

where a, is the angle “2r minus the sum of the other a,”.
This pleasing property of the minimum variate extends to an un-
countably infinite collection of such variates, since

P{ i[nf ) R(t)>z} =P{N (ball radius z)=0} =exp (— inz) .

As a slight generalization we note that
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exp [—-—;-Zz(2+h)] . hel0, 1]
P{inf R()>7)= 1
exp [——z—lz(h+«/2—2 cos h)] ) h € [r, 2x].

6. A trivariate generalization

The multivariate distribution mentioned in the previous section is
a special case of a more elaborate distribution. We illustrate by sketch-
ing the trivariate case. Consider the Poisson plane process in R® in-
troduced by Miles [4]. This is a statistically homogeneous collection of
planes in R® with the following properties.
(a) The planes cut any reference line at points which form a
Poisson point process, of rate A say, along this line.
(b) The planes cut any reference plane with lines which form a
Poisson line process on this two-dimensional plane.
(¢) The number of planes cutting any convex body D in R is dis-
tributed as a Poisson variate with mean AM(D), where M(D)
is the “mean caliper diameter” of D.
The mean caliper diameter is the mean length of the orthogonal pro-
jection of D onto a random isotropic line. For a convex polyhedron
(Santald [6])

(2) M="L 5 (r—a)z,
Ar

where z; and «; are the edge lengths and corresponding dihedral angles
of the polyhedron. Now consider three directions emanating from the
O of R). Define X, Y and Z as the distances along these directional
lines until a plane of the random plane process is encountered. Each
of these three variates is exponentially distributed with mean 1/a.
Their joint distribution is given by :

(3) P(X>x, Y>y, Z>z)=exp[—AM(4)]

where 4 is now a tetrahedron with one vertex at O, edges emanating
from O of lengths z, y and 2z, with dihedral angles determined by z, y
and z, and the chosen directions. Thus the exponent in (3) has 6 terms
each involving an edge length and a dihedral angle as in (2). There
is no short expression for all dihedral angles of a tetrahedron.

If the three chosen directions are coplanar then, clearly, the tri-
variate distribution collapses to that mentioned in Section 5.
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7. The associated bivariate uniform distribution

It is of some interest to enlarge the repertoire of bivariate uni-
form distributions since they provide a basis for the generation of bi-
variate forms having quite general marginals. The variates U and V,
defined by U=exp (—1X) and V=exp (— 1Y), are jointly uniform. Their
joint distribution function, G(u, v), their correlation coefficient and their
regression curves are given below for completeness. For wu,ve(0,1)
neE [0, 1],

G(u, v)=+uv exp [——;— v(log uwv)’— 4 log u log 'v]

p(ﬂ):_3_[4__77._ 81 =7) 1og (v—&‘)(3vz+6)] ,

847 ¢ (+86)(Bp—¢)
where £'=%(8+17).
1
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Fig. 6. The conditional expectation of V given U for the bi-
variate uniform distribution. The angle a is marked for
each curve.
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