Ann. Inst. Statist. Math.
39 (1987), Part A, 69-84

RANDOM SEQUENTIAL BISECTION AND
ITS ASSOCIATED BINARY TREE

MASAAKI SIBUYA AND YOSHIAKI ITOH

(Received Mar. 24, 1986; revised July 24, 1986)

Summary

Random sequential bisection is a process to divide a given interval
into two, four, eight, ... parts at random. Each division point is uni-
formly distributed on the interval and conditionally independent of the
others. To study the asymptotic behavior of the lengths of subinter-
vals in random sequential bisection, the associated binary tree is intro-
duced.

The number of internal or external nodes of the tree is asymptot-
ically normal. The levels of the lowest and the highest external nodes
are bounded with probability one or with probability increasing to one
as the number of nodes increases to infinity.

The associated binary tree is closely related to random binary tree
which arises in computer algorithms, such as binary search tree and
quicksort, and one-dimensional packing or the parking problem.

1. Introduction

Divide the interval (0, ) into two subintervals at random so that
the division point is uniformly distributed on the interval. Similarly
divide each of the subintervals. New division points are independent
of each other under the condition that the subintervals are given.
Repeat the procedure endlessly, all the division points being condition-
ally independent. This process is called “random sequential bisection ”.

Formally, let (U,,;, 0<7<2*")3., be a doubling sequence of inde-
pendent random variables following the (0, 1) uniform distribution. Let
X 0=5<2% d=0,1,2,---, denote lengths of the subintervals after
d-th step, defined by Xy,==,

X 21=X¢-11Ua 27 9 and

Key words and phrases: Random binary tree, random division, random packing, parking
problem, random spacings.
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Xa z;+1:X¢-uUa 27+1 » where U, 21+U¢ g1=1.

We are interested in the asymptotic behavior of X,,’s.

Our bisection process is described by an infinite complete binary
tree. The root is labeled as X,=2, and the roots of its left and right
subtrees are labeled as X;, and X, respectively. In general, a node
at the (d—1)-th level labeled as X, ,, has two son nodes which are
labeled as X, ,, and X, ;..

Now suppose that we stop to divide subintervals shorter than one,
and continue bisection as long as the subintervals are not shorter than
one. Thus the bisection process terminates in finite steps with prob-
ability one, leaving a finite number of subintervals, all shorter than
one. Correspondingly we have now an associated finite ‘ binary tree’
which is defined recursively as follows.

A binary tree in general is a finite set of nodes, which is parti-
tioned, if not empty, into a triple; ‘root’, ‘left subtree’ and ‘right
subtree’, where the root is a subset of a single node and the subtrees
are binary trees. A node may have only a left or a right tree. This
feature is different from a usual tree which appears, for example, in
cluster analysis. The notion has emerged from the computer tech-
niques such as binary search tree and quicksort. See Knuth ([4], Vol.
I, Chapter 2, Section 3) and Section 5 of this paper.

In the infinite complete binary tree whose nodes are labeled by sub-
interval lengths, keep the nodes with a label of at least one, calling
them “internal nodes”, which form a binary tree. The internal nodes
may have, as their son nodes, internal nodes and non-internal nodes.
Also keep these non-internal nodes, calling them “external nodes”, and
erase all the other nodes. See Figure 1. The external nodes corre-
spond to remaining subintervals in the random sequential bisection with
the stopping rule, while the internal nodes correspond to intermediate
subintervals to be eventually divided.

All X,,’s are proportional to the starting length x, and we could
start from the unit interval obtaining subinterval lengths Z,,=X,,/x,
and these standardized quantities appear in later discussions. Rather,
if « is increased in the above construction of finite binary tree, then
one external node, with the largest label among the external ones, be-
comes an internal node, and its two son nodes external nodes. When
length z is increased, the binary tree grows randomly. We call this
evergrowing random binary tree “the binary tree associated with ran-
dom sequential bisection” or simply “the associated tree”. See Sec-
tion 5 for other models of the randomly growing binary tree.

Our objective is now better defined as the study of the asymptotic
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Fig. 1. Random sequential bisection and the associated binary tree.
Xaj: subinterval lengths “node labels
O: internal nodes (Xay=1)
O: external nodes (sons of internal nodes and X35<1)

behavior of the associated tree as z increases to infinity.

In Section 2 we show that the expected numbers of internal and
external nodes (with label larger than w) at the d-th level are written
using the Poisson distribution (Theorem 1). In Section 3 the variances
of total numbers of internal and external nodes (with label larger than
w) are calculated and their asymptotic normality is shown (Theorem 2).
In Section 4, as d=clog x increases the external nodes are shown to
be confined in a range of levels with probability approaching one (The-
orem 3). The highest and the lowest level of external nodes are sim-
ilarly confined (Theorem 4). In Section 5 other views of the associated
tree are explained, and the associated tree is shown to be an upper
approximation of the discrete random binary tree. Finally, in Section
6, random sequential bisection and random packing are regarded as
special cases of a more general bisection process.

2. Expected number of nodes at the d-th level

In the binary tree T'(x) associated with the random sequential
bisection starting from (0, ), let N,(x, d) and N,(z, d) denote the num-
bers of the internal and the external nodes at the d-th level respec-
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tively, and let m,(x,d) and m/(x,d) denote their expected values re-
spectively.

If the first division point of the interval (0, z) is Y, 0<Y <z, then
Ni(z,d)=N(Y,d—1)+ Ny (x—Y,d—1), and the expectation of this equal-
ity shows that for 1<#<oc and d=1, 2,---

@.1) mz, )-—S {my, d—1)+m(z—y, d—1)}dy

=2 | my,d-dy,
x Jo

with
( 0, if 0=2<1,
(2.2) mzx, O)=1 .
L1, if 1Ssx<co.
The recursion equation (2.1) starting from (2.2) gives
0, if 0=x<1,
(2.3) my(x, d)=

gl 53 0E2) -t 1cocoo,
x k=2 k!
for d=0,1, 2,---

In any binary tree, N,(x,d—1) internal nodes have 2N,(x, d—1) son
nodes, among which Nz, d) are internal, therefore for d=1,2,---

(2.4) Nz, d)=2N(z,d—1)— Nz, d) .

The expectation of this equality shows that for d=1,2,...,

(2.5) mz, d)=2m (@, d—1)—mw, d)=20 L doga)"
x (d—1)!

The value of m(x, 0) is undefined at present.
Summarizing (2.3) and (2.5),

THEOREM 1. Among the possible 2¢ modes at the d-th level, 1=d, of
the associated tree T(x), the proportions of the expected number of the
internal and the external modes are the Poisson probabilities

1 & (log x)* 1 (log x)*!
= A nd )

respectively.

The implication of Theorem 1 is discussed in Section 3, and an ex-
tension of (2.5) is given in the remaining part of this section. The
expected number m(z, d) satisfies the recursion equation
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0, if 052<1,

2.6 mx, d)y= z
(2-6) (@, d) %Sm,(t,d——l)dt, if 1<z<oo,

for d=1, 2,... with the initial condition

1, if 02«1,
(2.72) my(x, 0)=
0, if 1f2<00.

Because of the difference of the initial condition m(x, d) vanishes in
(0,1) and the integration in (2.6) can be limited to the interval (1, z),
but not in (2.1). The initial condition (2.7a) looks just like a conven-
tional rule since an external node cannot appear at the root. However,
the condition (2.7a) reflects the fact that external nodes can appear at
the roots of the subtrees.

The equation (2.6) can be extended to the expected number m/(z,
d, w) of external nodes which is at the d-th level and whose label is
at least w (0Sw<1). That is, m.(z, d, w) satisfies the same recursion
equation (2.6) (actually m(x, d)=m,(2, d, 0)) with the initial condition

0, if 0sz<w,
(2.7b) mJx, 0, w)=4 1, if wgx<1,
0, if 1sx<oo.

The solution to (2.6), with m,(z, d) replaced by m.(z, d, w), and (2.7b) is

— o041 o L (log2)**
(2.8) my(x, d, w)=2%1 w);_(E:T)!_’
if 0Ssw<1Zr<o and d=1,2,.--.

The above expression (2.8) is just 1—w times of (2.5). This is
clear from the fact that the marginal distribution of a label X, of an
external node, length of a remaining subinterval of random sequential
bisection with the stopping rule, is the (0, 1) uniform distribution. To
prove this, in the formal definition of X,, in Section 1, let j=(J1J:- - Ja)
be the binary expression of a nonnegative integer index j, possibly

d
having leading zeroes. Namely, X,;=« [[ Uyy,...;,,, Where d is the
k=1

d
smallest integer such that z T] Ui,...s 18 less than one, or
k=1

d
-kZ=}1 log Uyy,...;p>log @ .

Since the left-hand side forms a Poisson process with intensity one,
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the difference —3log Uy;,...;,—log =—log X,, is a standard exponen-
tial variable under the above inequality condition, and X,; is condition-
ally a (0, 1) uniform random variable.

3. Asymptotic size of the associated tree

We study further total numbers N,(x):f} Ny(x,d) of the internal
P a=0
nodes and Nj(x, w)=§ NJ(z, d, w) of the external ones, whose labels are

at least w, of the associated tree T'(x). By summing up (2.3) and (2.5)
respectively, their expected values m,(x) and m/(x, w) are, if 1Sx<oco,

(3.1) m(r)=2c—1, and my(x, w)y=2(1—w)x .

The relationship between these values comes also from the fact
that N(x, 0)=N/(x)+1 in any binary tree because of (2.4), and from
the discussion at the end of the last section. Note that m(z) is the
solution to the integral equation

(3.2) m@)=2 ["m@dy+1,  1sa<e

with
my(x)=0, 0szx<1,

and m,(x, w) (m(x)=m/z, 0)) is the solution to

(3.3) mdz, w)=_:_ S my, wdy ,
0
with the convention
0, 0srx<w,
mfx, w)y=
1, wsr<l.

The equation (3.3) is obtained from (3.2) by putting m.(x, 0)=m,(x)+1.
See Section 6 where the equations are extended.

Let v.(x, w) denote the variance of N,(x, w). If 1<z and the first
division point of (0, x) is Y. Then v(x, w) is the solution to

v, w)=E" [Var [N(Y, w)+N(r—Y, w)| Y]]
+Var” [E [N(Y, w)+N(x—Y, w)| Y]] .

Because of the additivity of the conditional variance, this is equal to

G =" oy, W +vla—y, w)dy+Var (m (Y, B)+m(e-Y, B)]
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=% g vy, w)dy-+-2(Var [m(Y, k)]
+Cov? [m(Y, k), m(x—Y, h)]} .

Some results of this simple but tedious integration are shown in Ap-
pendix 1.
The main result is, if 2£r <,

{12w(1—w)—10(1——w)—1+8(1—w)

- lo _2 —Ll—w}w, if 0sw<1/2,
55 oo 1) g 1+w+1+'w( ) <1/2,
(-0 fe(—7+6w)+ L+ Eg10g 21,
w 14w 1+w
if 1/2sw<1,

The variance of Ny(x)=N,(x,0)—1 is equal to
v(, 0)=(8 log 2—5)x=0.54517744zx , if 2€2<o0.

The point is that v,(x, w) is proportional to = for 2<xz, and N(z) is
under-dispersion. It is shown in Section 5 that N,(x)=[x], where [x]
denotes the integer part of z, if 0<z.

Based on the linearity of m,(x, w) and v (x, w) in z, we have the
following :

THEOREM 2. The standardized random variable
(N, w)—m(x, w))[v vz, w)

18 asymptotically normally distributed as x—oo. The same statement
holds for N(x)=N,x, 0)—1.

ProOOF. The discussion by Dvoretzky and Robbins ([2], Section 5)
can be directly applied. The proof sketched in Appendix 2 makes this
paper self-contained.

4. Asymptotic shape of the associated tree

In Sections 2 and 3 some facts on the size of the associated tree
T(x) are shown. In this section its shape is discussed. Firstly we
note that Theorem 1 actually shows the following fact. If the num-
ber of external nodes at a level of T'(x) is small, it means either that
almost all nodes of the level are internal or that there are only a few
internal nodes at the level.

To see this, let p(x; ¢) be the Poisson probability function,
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ox; p)=e"p[al .

It is shown that its upper and lower tail probabilities are evaluated
by the probabilities at the end of the tails;

pla; )< 3 plos < 2EL ”‘“ @i, i pm1<z,
and

o(z; ;z)<>3 (Y; p)< p(x g, if z<p.

Theorem 1 shows that the expected number of internal and external
nodes at the d-th level satisfy

mx, d) <2 —myw, d)<—F mx, d), if d<logz,
log x—d
and
d+1 .
m(x, d+1)<myx, d)< ——————m,(x,d+1), if logz<d+1.
d+1—logx

Thus the asymptotic behavior of m/(x, d) determines that of m(x, d).

THEOREM 3. As x and d increase to infinity satisfying d=clog x,

mx, d)
myx, d)
(if ¢>1) t=—L _gao140(1/d) ,
v 2rd
2 —my(x, y)
(if e<1)

where y(c)=1/c+log (¢/2)—1. This tmplies that

0, 1f cSc<oo,
lim m (2, d)=lim m(z, d)={
o, of 1<e<e,

and

0, if 0<c=¢,
lim m (x, d)=1im {2¢—m(z, d)}:{
o, if e<e<l,

where the limit means d=clogx— oo, and ¢=4.31107041 and c=
0.373364616 are solutions to y(c)=0 or cexp (c™'—1)=2.
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ProOF. Using Stirling’s formula we obtain

E%—l P {‘T(")“‘Wl_l)}
< (4] <y o -0

Therefore m.(d, exp (d/c)) tends to 0 or oo, if 7(c)=0 or y(c)<O0, respec-
tively. The function y(c) decreases in monotone from y(+0)=co to
r(1)=—log 2 and increases in monotone to y(co)=co. The above in-
equalities on m(x, d) give the limits.

The limit m(z, d)—0 in the theorem means the probability of the
following equivalent events approaches one.

Ay(x,d): Nz, d):O(:>m?x X<l H(x)<d,

where H(x) denotes the highest level of the external nodes of T'(x).
Similarly, 2¢—m(z, d)—0 means that with probability approaching one,

Ay, d): Nz, d)=2'>min X, 21> hiz)>d ,

occurs, where h(z) denotes the lowest level of the external nodes of
T(x). Thus, the external nodes are located at the levels between clog «
and ¢logz. In terms of Z,,=X,,/x, lengths of subintervals starting
from (0, 1), this means the following:

COROLLARY. With probability approaching one as d— oo,
1/e<(—log Z,,)/d<1/c .
This corollary gives an upper bound of the distribution of mjax Zyy

and a lower bound of that of nbin Z4;. Rough bounds from the opposite

sides are obtained by modifying the random sequential bisection as fol-
lows.

Instead of doubling the number of subintervals at each step, keep
only one subinterval, always the larger or the smaller one. In the
case of smaller subintervals the length V, of the interval at the d-th

step is
d
Vd=x ;r[ S!
=1

where (S)) is a seduence of independent random variables following the
uniform distribution on the interval (0, 1/2). The logarithm

—log (2¢V,/x)= —jEi}l log (2S;)
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is the sum of d independent exponential random variables with the
mean equal to one, and follows the gamma distribution. Thus

(—log V;—(1+log 2)d+log x)/v'd

is asymptotically standard normal.
In the case where larger parts are kept, the length W, at the d-th
step is

Wd=w f]- Tj y

where (T,) is a sequence of independent random variables following the
uniform distribution on (1/2,1). Since —log T'; has the mean u,=1—
log 2 and variance ¢4 =1—2(log 2),

(—log W,— prd+log x)/o v d

is asymptotically standard normal.
In a realization of sequential random bisection, V, is larger than
min X,;, and W, is smaller than max X,;. That is, V; is stochastically
7 7

larger than mjin X,;, and mjax X;; than W,. Since —log V,/d—1+log 2
and —log W,/d— p,, we obtain a result:
THEOREM 4.
—log m;lx Z;,ld<1—log 2 and 1+log 2< —log mjin Zyld
almost surely as d increases to infinity.
Remark. The inequalities of Theorem 4 are equivalent to
1/(1—log 2)< H(x)/log x and h(x)/log x<1/(1+log 2) ,

respectively, and they are complements to the corollary of Theorem 3,
which means, with probability approaching one as d— oo,

1/e< —log m?,x Zyld and —log mjin Zyld<1fe .

5. More on the associated tree

The ever-growing binary tree associated with random sequential
bisection can be viewed in different ways. Suppose sticks of length
L.;, 7=1,2,--.,m, shorter than one, grow at the same rate, that is
dL,,/L,, is independent of subscripts. If the longest one, say L,
reaches one the stick breaks into two parts of lengths L,,,,=L,,U,
and L, ,.,=L,;(1-U,), where {U,} is a sequence of independent (0, 1)
uniform random variables. The others are renamed as L,,, =L, k+J.
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Starting from L,(0)=0, growing at the rate d L,,(t)/dt=L/t, “ grow and
break stick lengths” {L, ), j=1,2,---,n} with ,Zi} L. (t)=t is, at a

time instant, is the same set as the remaining subinterval lengths of
random sequential bisection with the stopping rule starting from an
interval of length ¢.

If a grow and break sticks process starts from a unit interval and
the time is measured by log ¢, then the process can be regarded as the
following diffusion or percolation process on the infinite complete bi-
nary tree. That is, liquid run through edges of the tree. Reaching
a node at the d-th level sometime, liquid reaches its two son nodes
after —logU,, and —log (1—-U,,) time intervals respectively. The pair
(—log U,;,, —log(1-U,,)) is a degenerated bivariate exponential random
variable. The time to reach a node corresponds to its counterpart’s
breaking time. The discussion by Pittel ([6], Section 4) can be applied
here.

An associated tree T'(x) keeps all the data of the above-mentioned
process. For a fixed value of x, T'(x) shows the history and state at
a certain time instant of the process. However, T(x) can be const-
ructed node by node in a different way. That is, arrange consecutively
all subintervals greater than or equal to one to form a line segment,
and drop a division point uniformly on it. This corresponds to make
and internal node branch, having two son nodes which may be internal
or external. Continue the process while there is at least one internal
node.

A finite tree T'(x) does not retain the order of growth of this type
but the order can be reconstructed stochastically as follows. Starting
from the root choose left or right son nodes with probabilities Xjo/ X
and X, /Xy. If, for example, the left node is chosen, then with prob-
abilities Xu/ X, Xu/Xe and X;/Xy, choose one of possible three nodes
at random, and so on. The number of possible orders depends on the
shape of the tree.

With the random sequential bisection, another type of random tree
can be associated as follows. Assume the starting length x be a posi-

tive integer. Label the roots of the subtrees as X,,=[X,] and X,=

[Xy], the integer part of X;, and Xj;, respectively. In general, if X, s
is a label of an internal node at the (d—1)-th step, its son nodes are

labeled as X, 2,=[)~(d_, ;Us4,] and X, 2,+1=[Xd_1 7Usz541] in the notation of
Section 1. Namely, under the condition that f(,,_“=k, X’duzk-—l—-
X, 2s+1 18 uniformly distributed on {0, 1,--., k—1} (with probability one).
Unit length being lost at each bisection, the number of internal nodes
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is » (with probability one).

This “discrete” random binary tree is precisely the concept model-
ing binary search tree and quicksort (Knuth [4], Vol. III) and it is also
associated with random spacings. It is well studied, and its symptotic
shape has been shown recently by Robson [8], Mahmoud and Pittel [5],
and Pittel [6].

Compare a realization of the discrete tree with that of the asso-
ciated tree of the same starting length x=n, to see Xd,gf(d,. The
associated tree is larger than the discrete one in subinterval length,
number of internal nodes at a level and in total, and levels of the
lowest and the highest external nodes. Among the statements follow-
ing Theorem 4, for example, H(x)/log x<¢ and h(x)/log x<1+log 2 with
probability approaching one, are valid for the discrete tree. Robson [8]
obtained ¢ by a more direct evaluation.

In this associated binary tree, the probability P,(x, d) of the event
Ay(x, d) (see the discussion before Corollary of Theorem 3 in Section 4):
Nz, d)=0¢#mjax X,;<1< H(x)<d, satisfies the equation, with P re-

placed by Py,
(5.1) P(z, d’=—i‘ S P(y, d—1)P(z—y, d—1)dy

and the initial condition

1, if 0=s2<1,

(5.1a) Py(x, 0)={
0, if 1fx<oo.

The probability P.(x,d) of the dual event A,(x,d): Nz, d)=2'=
mjin X,,21¢= h(x)>d, satisfies the same equation (5.1), with P replaced

by P., and the initial condition

0, if 052<1,"
(5.1b) P, (x, 0)={
1, if 1fx<oo.

While in the discrete binary tree the corresponding probabilities
Py(n,d) and P,(n,d) satisfy a discrete analogue of (5.1).
.2) B, d)=-71; >'30 Bk, d—1)B(n—k—1,d—1)
k=

and the initial conditions

. 1, if n=0,
(5.2a) Py(n, 0)=
0, if n=1,2,.--,
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and
~ 0 ’ if n=0 9
(5.2b) P,(n, 0)=
1, if n=1,2,....
respectively.

Since max X;;<1 implies max X, ,<1 and min )Z'.,,;l implies min X,
J J J J
=1,

Py(n,d)<Py(n,d) and P,(n,d)=P,(m,d) for 1<d<n.

6. Relation to the random packing problem

One dimensional random packing is known as the car parking prob-
lem. This problem can be extended to include random sequential bi-
section as follows. Along a street of length x, cars of length ! park
at random in vacant intervals longer than v (v>0). The usual car park-
ing problem, discussed first by Rényi [7] is the case v=I=1, and random
sequential bisection with the stopping rule is the case v=1 and 1=0.

In the usual set up of the car parking problem, cars are supposed
to arrive one by one. However, since all wide intervals are eventually
filled up, it can be viewed as a bisection with deletion of car length
interval, and can be associated with a binary tree. A car corresponds
to an internal node whose label is the length of the interval into which
the car entered, while a gap between cars corresponds to an external
node.

The expected number m(x) of total internal nodes (cars) satisfies

me+)=2 | m(y+1,

with
0, if 0g2<w,
m,(x)={ )
1, if 0szx<v+1,

while the expected number m,(x) of total external nodes (gaps) satisfies
me(x+l)=§- So m{y)dy

with

1, if 0g5z<w,

m,(w):{
2, if 0<z<v+l.
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The equations are essentially the same since m,(x)=m(x)+1. The delay
term I, which can be one without loss of generality if positive, in the
argument of the left-hand side of the equation characterizes the pack-
ing problem.

In the packing problem the distribution of gap lengths has been
studied. Bankovi [1] obtained the expected number of gaps longer than
w, and Itoh [3] obtained the distribution of the minimum gap. These
are related to Sections 2-4 of this paper, and can be extended further.
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APPENDIX 1

Computation of wv,(x, w) in (3.4) to obtain the result in (3.5) is
sketched in the following. The random variable Y is uniformly distri-
buted on (0, x), then

E[m(Y, w)]=(1—w)}z, 1<z,

E[mi(Y, w]=1=2{+20-w)@-D}, 1se,
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and

E [m(x—Y, wym (Y, w)]

0, 1<z<2w,

(x—2w)/x , max (1, 2w)=e<14+w,
N {2w—2+2(1—w)(x—w)¥})/x, 1+w=se<2,

21 —w)(2*+1—3w)/3x , 2<zx.

Using these, the integration equation (3.4) is solved case by case. When
the function v.(x, w) is determined in an interval of x, the integration
in (8.4) on the whole interval is replaced by its definite integral. For
<2, the function v(x, w) is as follows.

v, w)
(0, 0=x<1,
21—w)r(1-2(1—w)x) , 1<z2<2w,
21—-(1—wx)2l—w)xz—1), w<1/2 and 12 2<1 4w,

—-24+{20—w)+1j/wlz—4(1—w)x*, 1<2w=sz<l+w,

2(1+ duw(1—w))+ {——2—(1—4w+w’)——8(1—-w) log (1+w)} %
14w
+8(1—w)x log x—4(1—w)x*, w<1/2 and 1+w=r<2,

2(1+dw(l—w))+ {—14+6w+—1—1-270-+—11;—8(1—w) log (1+w)}x

L +8(1—w)xlog x—4(1—w)’x?, 1/2<w and 1+w=x<2.

APPENDIX 2

PROOF OF THEOREM 2.

In the third paragraph of Section 5, the second way to construct
T(x) node by node was shown. Suppose n—1 division points are dropped
at random on (0, z) in that way, and the lengths of the subintervals
are y=(y, ¥ *» ¥,). The number n=n(x)=o(x) will be specified later.
Construct T(y,), if y,>1, in any way, without changing the interval
if y,<1. The final result is equivalent to unconditional construction
of T(x), and

Nz, w)=3 N{yo ),

where the terms are conditionally independent.
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Put
Y= Ny, w)v (2, w)?,  i=1,2,+++,m,
and
Y= —m,(z, w)jv(x, w).
Then
2w, )= (N (@, w)—~m(a, w)fola, w} =3 Y,

and

(A.1) y_, E[Y,]=0 .

Since v,(x, w) is equal to A(w)x if 2<x<co, and is finite if 0=52<2,
2 0y w)=2w)s+0(n)

for any y, and

(A.2) Var [Z(w, w)|gl=3 Var [Y:|y]=1+0(1)

if n=o(x).
Now put

n=[x"*(log x)']=o(x)
and let B=B(z, n, ») denote the event
max y, <7z,
Consider the maximum u of nlrandom spacings of the interval (0, z).
For a positive integer k,

2 1\
2z Sk(l—-—-) ,
Pr[u> k]_ L)' —0

if k=cv x, where ¢ is a positive constant, as x increases to infinity.
Since w is stochastically larger than max y,, which is the longest inter-
1

val in random division with constraints, Pr[B]—1 as x increases. Tak-
ing <d8vi(w)/2, the event B means |E[Y,]|<3, and
(A.3) |Y.—E[Y.]|s3 .

The conditions (A.1), (A.2) and (A.3) jointly satisfy the conditions of
Lemma 2 of Dvoretzky and Robbins [2], a version of the central limit
theorem, and proves the asymptotic normality of Z(x, w).



