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Summary

In this paper we consider experimental settings in which v test
treatments are to be compared to some control or standard treatment
and where heterogeneity needs to be eliminated in n-directions. Using
techniques similar to those used by Kunnert (1983, Ann. Statist.,
11, 247-257) concerning the determination of optimal designs under a
refined linear model, some methods are given for constructing n-way
classification designs which are A- and MV-optimal for estimating ele-
mentary treatment differences involving the standard treatment from
m-way classification designs, m<n, which are A- and MV-optimal for
estimating the same treatment differences. Examples are given for
the case n=2 to show how the results obtained can be applied.

1. Notation and introduction

We begin by giving some matrix notation which is used through-
out the sequel;

A’'=the transpose of an m xXn matrix A,

R(A)=the vector space generated by the column vectors of an m

Xn matrix A,
A~ =a generalized inverse of an m Xn matrix A,
P,=A(A’A)"A’=the orthogonal projector on R(A) where A is an
m X n matrix,

I,=the nXmn identity matrix,

I OF J, ,=the m Xn matrix of ones,

tr A=the trace of an nxn matrix.
* This research was supported by NSF grant No. DMS-8401943.
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In this paper we consider experimental situations in which the data
obtained from a given design d is to be analyzed via a simple Gauss-
Markov (GM) model, i.e., a model of the form (Y, X,8, ¢’I,) where Y
is an »x1 random vector of observations with expectation E(Y)=X,3
and covariance matrix ¢*I,, X, is a known nXxs design matrix, g is an
8X1 vector of unknown parameters and ¢°>0 is a known or unknown
constant.

In a simple GM model, a linear combination t’ﬁ=i} t.8; of the model
i=1
parameters is said to be estimable in d provided there exists a linear
combination a'Y:ﬁ] a,Y; such that E(a’Y)=t'8. The best linear unbias-
i=1

ed estimator (b.l.u.e.) for any parametric function #8 which is estim-
able is t'3 where j is any solution to the normal equations

(1.1) X/ Xp=X!Y

which are obtained using ordinary least squares. In the experimental
situations considered here, we will only be interested in estimating
estimable functions of certain subsets of parameters in B, e.g., if B
and X, are partitioned so that X,=(A4,, U,) where A4, is an n X p matrix,

U, is an nxq matrix for p+gq=s, ,B=(‘;>, and

(1.2) E(Y)=X,8=Aaa+Ud ,

then we will be primarily interested in estimating estimable functions
of the form

8=, 0')( ‘;)=l'a .

In such cases, the b.l.u.e. for l'a is also given by l'a where & is any
solution to the equations

(1.3) GiG,a=Ca=GLY
where
(1.4) Gdz(In_PUd)Ad .

Equations (1.3) are called the reduced normal equations for estimating
a and the matrix C; is called the information matrix of d for estimat-
ing a.

We will henceforth assume that for any design d being considered,
A€ R(U;). We note that this assumption is not restrictive in the
sense that when estimating the effects of treatments in any classical
design setting, it is usually the case that A,J,,=a,J,, for some constant
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a, and U,J,=a,J,, for some constant a,. Under this assumption, (I,—
Py)AiJ;n=0, the row and column sums of C, are equal to zero, and
the only parametric functions of @ which are estimable are contrasts,

i.e., parametric functions of the form l’a=§‘,liai where il,:o. Any
i=1 i=1

design in which all treatment contrasts are estimable is said to be con-
nected in ¢ and a design which is connected in ¢ has C, of rank p—1.
We will also only be considering designs which are connected in the
model parameters we wish to estimate.

In most experimental situations there are a number of designs
available which can be used to achieve some specified set of experi-
mental objectives. We shall use D to denote a class of designs which
are available for use in a given experimental setting. An optimality
criterion is often used to help an experimenter select a design from
the available class D which best accomplishes the primary goals of the
experiment. The optimality criteria of primary interest here are the
A- and MV-optimality criteria.

la
DEFINITION 1.5. Let L'a=( ) be a vector of ¢ estimable func-
la
tions. Then d* € D is said to be A-optimal over D for estimating L'a
if for any other d ¢ D,

tr Cov,. (L'a)< tr Cov, (L'a)
where Cov, (L'a) denotes the covariance matrix of L’a under d.

DEFINITION 1.6. Let L'a be as in Definition 1.5. Then d*e D is
said to be MV-optimal over D for estimating L'a if for any other d ¢ D

max Var, (lla)<max Var, (l/a)
1sist 1sist

where Var, (/&) denotes the variance of l/& under d.

For each d € D, assume U,=(Uy,, U;) where U,, is an nXr matrix,
r<q. Then with each d e D, we can associate another design d, ob-
tained by ignoring the effects of the parameters in 6 corresponding to
the columns in U,. The information matrix of d, for estimating « in
the simpler model

1.7 E(Y)=Aua+Uy0
is given by
(1.8) Cu=GiuGa

where
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(1.9) Gdlz(In_PUdl)Ad .

Using the terminology of Kunnert [6], model (1.7) is called finer than
model (1.2). We shall use D, to denote the set of designs d, which
are associated with d e D. For d € D, there is of course a close rela-

tionship between C; and C,,. If we let C—}=(In——PUdl)Ud2, then it can be
verified that

Pud=PU,“+P6 ’
hence we see that
(1.10) Ci=GiG,=AiI,— Py ,)Ay=Cy— AP A, .

Since A/P;A; given in (1.10) is positive semi-definite, we have the fol-
lowing proposition which is given in Kunnert [6] and which is also
proven in Magda [7].

PROPOSITION 1.11. For de D, let d,e D, be its associated design.
Then C,<C, 18 the sense that C;—C, is positive semi-definite. Further,

Cd]=Cd if a/n/d mly ":f Ad(_;=0.

In this paper, we use arguments similar to those used by Kunnert
[6] to establish the A- and MV-optimality of certain types of n-way
classification designs for comparing a set of test treatments to some
standard or control treatment. However, since the results of Kunnert
[6] do not seem directly applicable for establishing the A- and MV-
optimality of designs for estimating an arbitrary vector L’a of estim-
able parametric functions, in Section 2 we give some general results.
In Section 3, we apply the results given in Section 2 to experimental
settings in which heterogeneity is to be eliminated in n-directions and
where a primary goal of the experiment is to estimate the difference
in the effects between a set of test treatments and a standard treat-
ment with as much precision as possible.

2. Theoretical results

In this section we give some results concerning A- and MV-opti-
mality which yield strategies for finding A- and MV-optimal designs in
a given class D which are analogous to those described in Kunnert [6].

THEOREM 2.1. Let d be some design whose data is to be analyzed
via model (1.2) and assume d is comnected in a. Also let d, be some de-
sign which can be associated with d as described in Section 1. If la
18 estimable in model (1.2), then



ON THE USAGE OF REFINED LINEAR MODELS 573

(2.2) Var, ('a)=Var,, (l'a) .
with equality holding in (2.2) if PzA,p=0 where p is such that 1=C,p.

ProoOF. It is easy to verify that if l'a is estimable in model (1.2),
then l'a is estimable in the finer model (1.7). Further, l'a is estimable
in model (1.2) if and only if [=C,p for some vector p and

2.3) (1/0%) Var, (a)=U'C;l=p'Cyp

where C; is some reflexive generalized inverse of C,, i.e., C; is a gen-
eralized inverse of C, which also satisfies C;C,C; =C;. Similarly, if I=
C,HT, then

2.4) (1/0%) Var,, (V&) =VCil=7'Cur

where Cj, is a reflexive generalized inverse of C,,. Since d is connect-
ed in «, C, has rank p—1 and one reflexive generalized inverse of C; is

—__ [0 0./,
C-= [ 1 1,p—1]
‘ OJp—l,l Can

where C,, is the principal submatrix obtained by eliminating the first
row and first column from C,. Also, since C, has rank p—1, C, will
have rank p—1 and a reflexive generalized inverse of C; is given by

_ 0/, 0J; ,_
Ci = [ 1 1,p 1]
‘ OJp-—l,l Caio

where C,,, is the principal submatrix obtained by eliminating the first
row and first column from C;. From Proposition 1.11, we have that
C,<C, and since

(2-5) Cd = Cdl _“AéPc‘:Aa ’

we clearly have that C,,<C,, and the inequality part of (2.2) follows
from the expressions given in (2.3) and (2.4). The equality statement
in the proposition follows from (2.5) and the second expressions for the
variance of l'a given (2.3) and (2.4).

From Theorem 2.1, we easily obtain the following two theorems
concerning A- and MV-optimality.

THEOREM 2.6. Assume the data to be obtained in a given experi-
mental situation is to be analyzed via a model of the form given in (1.2)
and let D denote a class of designs which are available for wusage such
that all d € D are connected in a. Let D, be the class of designs which
can be associated with d € D via the finer model given in (1.7) and let

lla
L’a:< ) be a vector of t parametric functions which are estimable in
lla
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model (1.2). If d* e D 1s such that d}¥ is A-optimal in D, for estimat-
ing L'a and if tr Cov, (L'a)=tr Covy (L'a) (tr A denotes the trace of an
nXn matric A), then d* is A-optimal in D for estimating L'a.

THEOREM 2.7. Assume the same conditions as in Theorem 2.6. If
d* e D s such that df is MV-optimal in D, for estimating L'a and if
max Var,. (l/a)=max Var,, (l/a), then d* is MV-optimal in D for esti-

15ist 15ist
mating L'a.

Clearly the results given in Theorems 2.6 and 2.7 yield a method
for finding a design which is A- or MV-optimal within a given class
D which is similar to that suggested by Kunnert [6]. Namely, find a
design d¥ which is A- or MV-optimal in an associated class D, under
the simpler model given in (1.7), then construct from d} a design d*
which satisfies the conditions given in the theorems under model (1.7).
Of course, the simplest situation in which this method will work is
when d} € D, can be found such that the design d* which can be con-
structed has C,.=C,. which implies that the orthogonality condition
given in Proposition 1.11 must be satisfied.

3. Applications

In this section we apply the results given in Section 2 to experi-
mental situations in which the effects of v treatments are to be com-
pared to the effect of some control or standard treatment and where
it is necessary to eliminate heterogeneity in 7 directions. In such a
setting there are m classification factors and we shall let b, denote the
number of levels of the i-th classification factor (1<7<m). Altogether,
there are b=b,xb,X -- - Xb, different combinations of levels of the clas-
sification factors under which the treatments are to be tested. Any
combination of these factor levels is called a cell and we can coordi-
natize these cells by the n-tuples of integers (i, -, 4,) with 1=<¢,<b,,
j=1,--+,n. The usual model used to analyze the data obtained from
an n-way classification design specifies that the expectation of an ob-

servation on treatment ¢ in cell (j,,---, 5,) i8 a,+ > B}Y where «; and
k=1

B are the effects of treatment ¢ and the j,-th level of factor k, re-
spectively. All observations obtained are assumed to satisfy the usual
GM model assumptions. A design d to be used in the setting of n-way
heterogeneity just described is some allocation of the v+1 treatments,
denoted by 0,1,---, v, 0 denoting the standard treatment and 1,2,---,v
the test treatments, into the b available cells.

For some design d which can be used in such an experimental set-
ting, let N;;=(n$), i=1,---,n, be the incidence matrix between the
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v+1 treatments and the b, levels of the ¢-th factor, i.e., n§), is the
total number of times that treatment s occurs in the cells having 2-th
coordinate equal to w. Under the m-way classification model given
above and using diag (a,,---, a,) to denote an mXxn diagonal matrix,
the information matrix for estimating the treatment effects ay, a;,::-, @,
corresponding to (1.3) can also be expressed as (see Cheng [1], Theorem
2.1)

Co=diag (Ya0, Tar,* * 5 Tav) —(1/b)by Noy N4, — (1/b) é bnNan(Iah_brflth,bh)Na{n
=diag (Ta0s Tary** * 5 Tap) —(1/D) é by NaurnNin+((n—1)/b) [”'at'rdj](u+1)><(u+1)

where 7r,,=the number of replications of treatment 7 in d, b=b,xb,x
eo+ Xb,, and [7u74]wrnxwsn 18 the (v+1) X (v+1) matrix whose (¢, 5)-th
entry is 7,7 C; is also referred to as the C-matrix of d and is well
known to have zero row and column sums.

We shall only be considering designs which are treatment connect-

ed, i.e., those designs d for which all treatment contrasts l’a;élia,
i=0

are estimable and for which C; has rank ». We shall also use D(v+1;

by,---,b,) to denote the class of all treatment connected designs hav-
ing v+1 treatments arranged in the b cells described previously.
Suppose M is some subset of m subscripts out of {1,---,n}. With

each d € D(v+1;b,,---,b,), we can associate the design d,(M) which is
that m-way classification design obtained from the model for d by ig-
noring the effects of those classification factors corresponding to sub-
scripts not contained in M. The relationship between the information
matrices of d and d,(M) as given in (1.10) can also be expressed as

(3.1) Ca=Caa—(1/0) > byNyn(L,, —b5'Js,,5,) N
hEH

We will henceforth use D,(M) to denote the class of all designs d,(M)
corresponding to de€ D(w+1;by,---,b,). If we take M={i} for some
subsecript ¢ in {1,---,n} the resulting design, denoted by d(7), is a
block design having v+1 treatments arranged in b, blocks of size (b/b,),
incidence matrix Ny, and concurrence matrix NN/ =(2%)w+0xcwsn-

Since our primary interest in this section is to find designs which
are optimal for estimating differences in the effects between the v test
treatments being studied and a standard treatment, we want to find
designs which estimate elementary treatment differences of the form
a,—ay for 1=1,-.., v with as much precision as possible.

LEMMA 3.2. Consider the class of designs D(v+1;b,,---,b,) and let
d € Dwv+1;b,---,b,) be arbitrary. Now, in the m-way -classification
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Vo
model, let L’a=( ) where la=a,—a,. Then
la
1/ Cov, (L'a)=Cgz}

where Cy 18 the principal submatrix obtained by eliminating the first
row and first column of C,.

Proor. As in the proof of Theorem 2.1,

o 0Jy  0J,
1 2 C LI :LI< 11 lu>L
(1/4") Cov, (L'a) 0T Cal
where C,y, is the principal submatrix obtained by eliminating the first
row and first column of C,. The result now follows since

L=<“'£v> :

By the results given in Section 2, one way to find a design d*
which is A- or MV-optimal in D(v+1;b,,---, b,) for estimating element-
ary treatment differences of the form a;,—a, is to let ME&({1,-..,n}
and then find a design d}¥(M) ¢ D,(M) which is A- or MV-optimal in
D(M) for estimating the same contrasts and for which Cov,. (L'a)=
CoVayy (L'@). As also indicated in Section 2, one way of doing this is
to find d*e D(v+1;b,,---,b,) such that d¥(M)e D(M) is A- or MV-
optimal in Dy(M) and such that Cu=Cyu-

LEMMA 3.3. Consider the class of designs D(v+1;b,---,b,) and let
Mc{1,---,n}. Now let d e D(v+1;by,---,b,) be arbitrary and let d,(M)
€ D(M) be its associated design. If for all i ¢ M,

Nii=(awy, 10 @oly 107+ * 5 Qorady,1)
then Cd':Cdl(M)'

Proor. Without loss of generality, assume that M={1,-.-, m}.
Then from (3.1), we see that

Ce=Caar—(1/0) 32 bpNunly, by 5,)Nis -
h=m+1
But now, since (I,,—b;'Js, s,)Js,1=0, it follows that for all hzm+1,

(Ibh—b;lth.bh)Ndhzo ’
hence that C,=C, .
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THEOREM 3.4. Consider the class of designs D(v+1;b,,---,b,) and

la

le¢ MS{1,---,n}. Now consider L’a=(f

la

D(v+1; by, -, b,) is such that d}¥(M) is A- or MV-optimal in D(M) for
estimating L'a and is such that for all 1 ¢ M,

) where lla=a;—a,. If d* €

Ni=(ay,100+*) Qossds,,1)
then d* is A- or MV-optimal in D(v+1;b,,---,b,) for estimating L'a.

ProOF. The theorem clearly follows from Lemma 3.3 and Theo-
rems 2.6 and 2.7.

A problem which has received considerable attention in the last
several years has been that of finding designs which are A-optimal and
MV-optimal for estimating test treatment-control treatment differences
in experimental settings where heterogeneity is to be eliminated in a
single direction. In particular, a good deal of study has been done
concerning the construction of balanced treatment block designs and
group divisible treatment block designs which are A-optimal and MV-
optimal for estimating test treatment-control treatment differences.

DEFINITION 3.5. Let d € D(v+1;by,---,b,). Then d,(¢) is called a
group divisible treatment design with s+1 classes (GDTD (s+1)) if 7,
=...=1,, and if the subscripts 1, 2,- - -, v corresponding to the test treat-
ments can be partitioned into s mutually disjoint sets V,,---, V,, all of
size v=v/s, such that N,,N/,=(2{,) has

i) 2R=---=25,

il) A=-.-=2a$%=2, for some constant 2,

iii) for p,qeV,, p+#q, 2§0,=2, for some constant 2,

iv) for peV,, qeV,, x+y, 2$,=2, for some constant 2,.

DEFINITION 3.6. If d € D(v+1;b,,---,b,) and d,(¢) is a GDTD (s+1)
such that 2,=2;, then d,(7) is called a balanced treatment block design
(BTBD).

A number of results have been discovered recently concerning the
A-optimality and MV-optimality of BTBD’s and GDTD (s+1)’s for esti-
mating treatment differences of the form @;,—a,. Majumdar and Notz
[9] give an algorithm which can sometimes be used to establish the
A-optimality and MV-optimality of BTBD’s under certain conditions.
Hedayat and Majumdar ([3], [4]) have catalogued a number of designs
as well as characterized several families of BTBD’s which satisfy the con-
ditions of the algorithm given by Majumdar and Notz [9]. Jacroux [5]
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has generalized the results given by Majumdar and Notz [9] with re-
spect to MV-optimality and has developed an algorithm which can of-
ten be used to establish the MV-optimality of certain GDTD (s+1)’s.
In many cases, the designs which can be proven to be A-optimal and
MV-optimal in the setting of one-way heterogeneity can be used to
construct designs which are A-optimal and MV-optimal in experimental
settings which require the elimination of heterogeneity in more than
one direction.

THEOREM 3.7. Let L'a be as defined in Theorem 3.4 and let d* e
D@w+1;by,---,b,) be a design such that d¥(i) € D(M) where M= {i} s
a GDTD (s+1) or BTBD which is A-optimal or MV-optimal in D,(M)
for estimating L'a. If for all h¢ M, N,, has the form Nin=(aJs, 1
ooy Ay, 1), then d* is A-optimal or M V-optimal in D(v+1;by,---, b,).

ProOF. Simply apply Theorem 3.4 with M={i}, and we obtain
the desired result.

Of course, in general, certain conditions must be satisfied in order
to construct a design d* which satisfies the conditions given in Theo-
rem 3.7. In particular, using arguments exactly analogous to those
used to prove Proposition 2.2 in Constantine [2], one can prove the
following theorem.

THEOREM 3.8. Let L'a be as defined in Theorem 3.4 and consider
the class of designs D(v+1;by,---,b,). If d¥()e D(M) where M= {i}
18 a GDTD (s+1) or a BTBD which s A-optimal or MV-optimal in
D\(M) for estimating L'a and if for all h#1, ry,/b, is an integer for
p=0,1,---, v, then there exists a design d* e D(v+1;b,---,b,) satisfy-
ing the conditions of Theorem 3.7.

We now give several examples in the case n=2 to illustrate some
of the results given in this section.

Example 8.9. Consider the class of designs D(4; 9, 3) and consider
the BTBD d¥(1) € D(M) where M,={1} and whose incidence matrix is
given by

111111111
111111000
N,pl: .
101010111
010101111

Using the results of Majumdar and Notz [9], it follows that d¥(1)
is both A-optimal and MV-optimal in D,(M). Now consider the row-
column design d* € D(4; 9, 3) given by
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0310210 3 2
d¥*=|1 0 2 1 0 3 2 0 3
210310320
Then d* has N,., where

3 3 3

2 2 2

New=|g 5 o

2 2 2

Since N,., has the form specified in Theorem 3.7, it follows that d* is
both A-optimal and MV-optimal in D(4;9, 3) for estimating elementary
treatment differences involving the test treatments and the standard
treatment.

Example 3.10. Consider the class of designs D(10; 24, 3) and the
BTBD d¥(1) € D(M) where M= {1} whose incidence matrix is given by
11111111111111111100000 07
111100000000000000110000
000011110000000000101000
100000001110000000001100
010010000001100000000110
001001001000010000000011
000000000001011100011000
000000100100000011010010
000100010000001010000101
100000000001010010110000 1
It is shown in Majumdar and Notz ([9], pp. 263-264) that d¥(1) is both
A-optimal and MV-optimal in D,(M). Now consider the row-column
design d* given by

041025783096008079162345
d¥1=|11058020053044669072138T79].
3101402207309506809764538

Then d* has N,., where

6 6 67 |2 2 2
2 2 2| |2 2 2
Nw=|2 2 2| |2 2 2
2 2 2| |2 2 2
2 2 2| [2 2 2]
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Since N,., has the form specified in Theorem 3.7, it follows that d* is
both A-optimal and MV-optimal for estimating treatment differences
of the form a;,—a.

Example 3.11. Consider the class of designs D(7;18,3) and the
design d}¥(1) € D(M) where M = {1} and whose incidence matrix is given
by
1111111111111111117
111111000000000000
110000111100000000
Ny=[001000100011110000
000100010011001100
000010001000101011
1000001000100010111]
It is shown in Jacroux [5] that d}(1) is a GDTD (4) with V,={1, 2},
V,=1{8, 4}, V,=1{5,6}, 2,=2, 2,=1 and which is MV-optimal in D(M).
Now consider the row-column design d* given by

021051042043035066
d*={103106205204304605
210410320630560450

Then d* has N,., where

N¢‘2=

N NN DN DN
N NNDNDND

NN NN NN

2 2

Since N,., has the form specified in Theorem 3.7, it follows that d* is
MV-optimal for estimating elementary treatment differences involving
the test treatments and the standard treatment in D(7; 18, 3).

Comment. It has come to the author’s attention that Professor
D. Majumdar has obtained several results which are related to some
of those presented here. For further information concerning these
results, the reader is referred to Majumdar [8].
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