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Summary

The class of discrete distributions of order k is defined as the class
of the generalized discrete distributions with generalizer a discrete
distribution truncated at zero and from the right away from k+1.
The probability function and factorial moments of these distributions
are expressed in terms of the (right) truncated Bell (partition) poly-
nomials and several special cases are briefly examined. Finally a Poisson
process of order k, leading in particular to the Poisson distribution of
order k, is discussed.

1. Introduction

Philippou and Muwafi [15] considered the problem of finding the
probability function (p.f.) of the number N, of trials required until the
first occurrence of the k-th consecutive success in a sequence of inde-
pendent trials with constant success probability and expressed it com-
binatorially in terms of the Fibonacci polynomials of order k. The same
probability was also derived by Feller ([7], p. 322) as an application of
the renewal theory but the origin of this problem can be attributed to
De Moivre ([6], p. 254) (see also Todhunter ([17], p. 184)). Uppuluri
and Patil [18] provided another derivation of this probability using gen-
erating functions. Philippou, A., Georghiou, C. and Philippou, G. [14]
named the distribution of the random variable N, generalized geometric
distribution of order %k and further studied it along with its s-fold con-
volusion, the negative binomial distribution of order k; the Poisson dis-
tribution of order k was derived as a limiting form of the correspond-
ing negative binomial distribution. Properties of the Poisson and the
negative binomial distributions of order k were also discussed by Philip-
pou, A. [13], [14]. Reliability models connected with the preceding
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distributions were studied by Chiang and Niu [4] and Bollinger and
Salvia [2]. Hirano, Kuboki, Aki and Kuribayashi [9], Hirano [8] and
Aki, Kuboki and Hirano [1] obtained some formulae useful for the cal-
culation of the probabilities and moments of these distributions and
derived the logarithmic series distribution of order k as a limiting form
of a left truncated negative binomial distribution of order k.

In the geometric and the negative binomial distributions of order
k, the order is the length of the run of occurrence of an event, con-
sidered as a success. Since the Poisson and logarithmic series distri-
butions of order k were obtained as limiting forms of the complete
and a left truncated negative binomial distribution of order k respec-
tively, this meaning of the order can hardly be extended. Aki, Kuboki
and Hirano [1] in an attempt to give a meaning of the order for these
distributions introduced a class of @#-generalized discrete distributions.
Examining more closely the definition adopted it follows that the class
of 6-generalized distributions is nothing but the class of the generalized
power series distributions.

In the present paper the class of discrete distributions of order k&
is more suggestively defined as the class of the generalized discrete
distributions with generalizer a discrete distribution truncated at zero
and from the right away from k+1. Thus the order of the distribu-
tions is the order of the probability generating function of the gener-
alizer (Section 2). The probabilty function and the factorial moments
of the class of discrete distributions of order k£ are expressed in terms
of the truncated Bell (partition) polynomials and several special cases
are discussed. (Sections 3 and 4). Finally modifying a model studied
by Janossy, Renyi and Aczel [10], a Poisson process of order k is dis-
cussed, which leads in particular to the Poisson distribution of order k.
In this model %k is the maximum number of events occurring in a
“small ” time interval (Section 5).

2. Probability generating function

Aki, Kuboki and Hirano [1] assuming that ¢(¢f) and ¢(t) are prob-
ability generating functions (p.g.f.’s) and >0 such that ¢(f)< o, called
the distribution with p.g.f., h(t)=¢(0¢(t))/e(6) a 0-generalized distribu-
tion. From this definition it follows that f(t)=¢(0t)/¢(6) is the p.g.f. of
a power series distribution with parameter 6 and series function ¢(f).
Hence h(t)=f(¢t))=e(0¢(t))/e(0) is the p.g.f. of a generalized power
series distribution. Note also that the generalizing distribution for the
geometric, negative binomial and logarithmic series distributions of order
k is a truncated geometric distribution with probability function (p.f.)

P(ler):(l_pk)_lqpr_l ’ T=11 2:' ) k’ 0<p<1) q=1_p .
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and p.g.f.
(2.1) 9:()=(1—p*)"'gt(1—pt) "' (1—p*t") .

The generalizing distribution for the Poisson distribution of order k is
the discrete uniform distribution over the set {1, 2,---, k} with p.f.

P(X=r)=1/k, r=1,2,.--, k.
and p.g.f.
(2.2) g:(t)=t(1—t)"' A —t")/k .

Therefore the class of discrete distributions of order %k can be more
suggestively defined as the class of the generalized discrete distribu-
tions with generalizer a discrete distribution truncated at zero and
from the right away from k+1. Letting f(f) be the p.g.f. of the dis-
tribution to be generalized and g.(t) the p.g.f. of the generalizer then
the p.g.f. of the class of discrete distributions of order k is given by

(2.3) k()= £(g:(®)) -

A random variable obeying a discrete distribution of order k& may be
represented as

(2.4) Sv=Xi+X;+ -+ Xy

where X;, ©1=1,2,--. is a sequence of independent and identically dis-
tributed discrete random variables with distribution truncated at zero
and from the right away from k41 and N is a nonnegative integer
valued random variable independent of X;, i=1,2,....

Letting

(2.5) f@=pl—aq:t)”*, D:=0" @=1-9"

which is the p.g.f. of a negative binomial distribution and g.(f) as in
(2.1), (2.3) reduces to the p.g.f. of the negative binomial distribution
of order k. The special case s=1 yields the p.g.f. of the geometric
distribution of order k. For

(2.6) f)=log (1—08)log (1—6:) ,  O,=1—p*

which is the p.g.f. of a logarithmic series distribution and for g,(t)
given by (2.1), (2.3) reduces to the p.g.f. of the logarithmic series dis-
tribution of order k. Finally taking

ft)y=e 10, A=ka, i>0

which is the p.g.f. of a Poisson distribution and g.(t) as in (2.2), (2.3)
gives the p.g.f. of the Poisson distribution of order k.
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The probability function and the factorial moments of the class of
discrete distributions of order & may be expressed in terms of the
(right) truncated Bell (partition) polynomials which are briefly presented
in the next section.

3. Truncated Bell polynomials

The Bell (partition) polynomials denoted by Y,=Y.(fg:, f9s -, fan),
fr=f,, may be defined for every nonnegative integer » by the sum

nlf, m T2 . 77
@) Yilfo oo, fon=3 L (S ()" (L)
where the summation is extended over all partitions of n, that is over
all »,=20, 1=1,2,--.,n such that »4+2r,+..-+ar,=n; r+r+---+7,
=7 is the number of parts (summands) (cf. Riordan [16], Chapter b).
The partial Bell (partition) polynomials denoted by Y, ,.=Y, (g1, 9.,
-++,g,) may be defined for n and r nonnegative integers by the sum

32)  YoA9, 9, 9= —~L—<£>rl<ﬂ>”' ' ( ul )

IR ATERY MR | 2! n!

where the summation is extended over all partitions of n into » parts,
that is over all »,=0, =1, 2,---, n such that »,+2r,+---+nr,=n and
47+ - +7r,=7r (cf. Comtet [5], Chapter 3).

From the above definitions it follows that

(3'3) Yn(fgly fgb Tty fg")zé‘:'] fr Yn,r(glr [P TR gn) .

For a given positive integer k and for every positive integer n>k
consider the polynomials

_ nlf, g )1< gz >'2_ < g >’k
(3.4) Y..(f91, f92 y f9)=22 m(T o1 &l
where the summation is extended over all partitions of n with parts
not greater than k, that is over all »,=0, 1=1,2,.--, k such that »+
2ry+ - +kry=n; r.+7ry+---+7r,=r is the number of parts.
The polynomials T,..=T,..(fg:, f9z- "> fgn), m=min {n, k}, defined
by

Yn(fglr fg2r' ) fgn) ’ nék

Yn;k(fglv ngD. ) fgk) ’ n>k

may be called (right) truncated Bell (partition) polynomials.
For a given positive integer k and for every pair of positive inte-

(35) T,.-,k(fgu fgzy' %y fgm)=
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gers n=7r, n>k consider the polynomials

e, @)= n! g1 >1< g )'{__(gk)’k
(3'6) Yn,r;k(glv g2 ’ gk)—z m(l—! E— —7CT

where the summation is extended over all partitions of n into » parts
each of which is not greater than k, that is over all »,=20, 1=1,2,---,k
such that »+2r,+-- - +kr,=n, ri+r+--+r.=r.
The polynomials T, ,.=T, .01 9s- ) 9gn), m=min {n, k}, defined

by

Yn,r(glv [/ TR gn) ’ nék
(3°7) Tn,r;k(glv gy gm)=

Yn,r;k(glr [P TARRE gk) ’ n>k

may be called (right) truncated partial Bell (partition) polynomials.
Definitions (3.5) and (3.7) imply the relation

(3.8) Tosf00 S0+ FOw) =35 o Tors@1r G-+ G)

m=min {n, k} .

The generating functions of the truncated Bell and partial Bell
polynomials may easily be obtained as

(B9 3 Tuslfon f0u- -, fo)0inl=3 FloOVIri=e/,  fr=f,

Tn,r;k(glv [P TR gm)t"/n! =[gk(t)]r//r!

Ms

(3.10)

]
o

n

(3'11) i io Tn,r;k(glr [/ IR gm)u't"/n!=e“ﬂk(t)
n=0 r=
where
k
gk(t)=;§ g,t5" .

Some special cases of the truncated Bell and partial Bell polynomials
useful in expressing the probabilities and factorial moments of the
Poisson, logarithmic series, geometric and negative binomial distribu-
tions of order k are briefly presented.

The truncated exponential Bell polynomials corresponding to f,=1,
r=0,1,2,.-- and denoted by T,..(9,, gz -+, 9») have generating function

oo k
(312) TuO)=2 Tosldy Gu* ) gu)t'[nl =%, gu(t)= pY g9,¥/3! .

The truncated logarithmic polynomials corresponding to f,=0, f,=
(r—1)!, r=1,2,--- and denoted by L,.(g, gs---,9n) have generating
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function
(3.13) L{)=3] Lua(u, g1 gu)"I!
——log (1-0:))} ,  G(O=330,¥I3! -

The truncated potential polynomials corresponding to f.=(s),, r=
0,1,2,--- and denoted by PSg:, g2 -, 9») have generating function

(8.14) Pk,,(t)=§o PSAgy, gos- - -5 gm)tm!
=[+a.0F,  ab=3g,4i.

From the recurrence relations for the complete exponential, log-
arithmic and potential polynomials (ef. Charalambides [3]), the follow-
ing recurrence relations for the corresponding truncated polynomials
are deduced :

(3'15) Tn;k(gly gz ')=jZ':=1 <?:1>91Tn—j;k(g1r gz - ') ’ To,k:‘l

(3.16) Lyi1.4(91 92+ ) =0nt:l(m, k)+Z} < )gjLn—j+1 W9 92 *)
L,=g,
where the zeta function {(n, k)=1, n<k and {(n, k)=0, n>k,

G17) P, o-)=5 (271 L, PO g )

P{R=1.
&

Putting in (3.10), g,=j'lab’, 7=1,2,.-- jz_} it follows that

ST, (ab, 2ab, - - -, mlab™)trn! =arbrtr (z ) /
n=0

and

(3.18) T, ,(ab, 2ab%- .-, mlab™)=nlab"N(n—r, r, k—1)/r!,
r<nsrk

where

Nen, 7, =33 (~1)( ;)(""‘("j_li“‘l)

is the number of ways of distributing » like objects into » different
cells with no cell containing no more than k objects.
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Letting g,:A(kJrl), §=1,2,---, k from (3.10) it follows that

kE \j+1
i Tn,r;k(gl) [/ TR gm)tn/n! =k-rt—'<é (l‘.:_*—l)tt“)r/r!
n=0 = \j+1
and
(3.19) T, .91 95y gu)=nlk""Qn+1r, r, k+1)/7!

where Q(n, r, k) is the number of ways of distributing n like objects
into r different cells, each having k different compartments with one
object capacity, such that each cell contains at least two objects.

4. Probabilities and factorials moments

The probability function P,=P(Sy=n) of a discrete distribution of
order k& with p.g.f. given by (2.3) on using (3.9) may be obtained as

P,=P(N=0),
(4.1)

Py=— TS0 fou -, fa)
n=1,2,---, fr=f,, m=min{n, k} .
where
fr=7Q,=r!P(N=7r), g.=rlp,=r!P(X=r),
or if one prefers, on using (3.8), as

P,=P(N=0),
(4.2)

n

Pn:",;blT % T!QrTn,r;k(ph 2!1)2, %y m!pm) ’ ’n=1, 2; M)

Similarly the factorial moments M,=FE[(Sy).], may be obtained as
4.3) Mo, =T, (apw: apa, ) Atem) QA =a,,
=f§:_‘(,) i T i fary By Pem) m=min {n, k}
where
an=~E[(N),],  po=E[X)].

Next, the three major sub-classes of discrete distributions of order
k are briefly discussed.
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4.1. Poisson distributions of order k
In this case f(t)=e¢** and (2.3) reduces to
» h(t) — e—i-H?gk(t)
which on using (3.12) yields
4.4) P,=e’'T,.(0p,2!0p,,---, m!op,)/n!, n=0,1,2,..-

=——1-‘-e—l i 0rTn,r;k(p1! 2!1)2: Tty m!pm) ’ m=min {n! k]
n. r=0

and
(4-5) M= Tn;k(ﬁf‘(l)v 0#(2), trey 0#(m))

=§ O T (s s *s fomd) » m=nmin {n, k} .

Note that the recurrence relation (3.15) implies the following recur-
rence relations

(4.6) P=2 5\ jp,P.;,  m=min{n k)
4.7) M,,=0 é (?:DFU)M@.—;) ’ m=min {n, k} .

For the special case of the Poisson distribution of order k, §=k2
and g,(t) is given by (2.2). Then on using (3.18) and (3.19)

4.8) P,=¢™ 3 ¥ N(n—r, r, k—1)
(4.9) Mey=n! 3 ¥Qu+r, v, k-+1)/r!

the first of which was also derived by Papastavridis [11].

4.2. Logarithmic series distributions of order k
The p.g.f. (2.3) reduces in this case to

h(t)=log {L—0g.()}/log (1—06) ,  0<6<1.
Therefore, by virtue of (3.13), it follows that

(4-10) Pn=[—10g (1—0)]“l n:k(0p1’ 2!0p2, ] mlapm)/n! ’
n:l,z, oo

=—;'—[-10g 1-o ?3:1 (r—1)0"T, .. (0, 2'Dyy - - -, MID,)

m=min {n, k}
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and
(4.11)  Moy=[—log (1— )Ly (01— 0)" ttery, 01— 6)"prepy - - -
(1 —0)" prcmo)
—[—log (1—8)]™* z_‘.l (r—1)16"(1—6)~"
« T i tars ,um,-_- s fem) m=min {n, k} .

The recurrence relation (3.16) implies the following recurrence relations

(4.12) Po.i=[—log (1—0)]"0p,0C(m, k) +—0— 33 (n—G+1)p, Po_yus
n+1 ji=t
m=min {n, k}

and

@13 Moy =00—07*{{~To (1=0) ol B
+12=1 (?)#u)Mm-m)l , m=min {n, k} .

For the special case of the logarithmic series distribution of order
k, 0=1—p* and g.(t) is given by (2.2). Hence by (3.18)

(4.14) P,=[—klog p]~* % %q’p""N(n—r, rk—1),

which was also obtained by Papastavridis [11].

4.3. Negative binomial distributions of order k
In this case f(t)=1—0)(1—0t)*, 0<6<1, s>0 and (2.3) reduces to

h(t)=(1—06)[1—06g.()]™
which on using (3.14) yields
(4.15) P,=(1—0)y PG (—0p;, —20py,- -, —m10p)n!, n=0,1,2,.--
=L -0y 5 DT lp 200, D)
m=min {n, k}
and
(4.16) Mu=PS(—0(1—0)"pawy, —0(1—0)"" ptewyy =+ - —0(1—0) " ptcm)
=3} (87— 1,0 (L—0) " Turslptcon frvr™ " frcm) »
m=min {n, k} .

The recurrence relation (3.17) implies the following recurrence relations
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(4.17) P=L 5\ (n+si—i)p, Prcs
(4.18) Moo=00-0)" 3 (* 71 2H8=T Moy
=1\j—1 J

For the special case of the negative binomial distribution of order
k, 6=1—p* and g,(t) is given by (2.1). Hence by (3.18)

(4.19) Pi=3 (s +:‘ 1>q’p"+"‘"N(n—'r, rk—1).
r=0

The geometric distribution of order %k corresponds to s=1. The ex-
pression (4.19) was also obtained by Papastavridis [11].

5. A Poisson process of order k

Consider a homogeneous stochastic process {X(t), t=0} with inde-
pendent increments and let P,(t)=P[X(t)=n], n=0,1,2,--.. Assume
that for small 4¢t>0,

(6.1)  P(4)=P[X(4)=r]=2,4t+0(dt), r=1,2,-+-,k.
1— é P,(4t)= P[X(4t)>k]=0(4t)

where the function O(f) has the property
lim OW) _g .

4t—0 4
Note that the preceding conditions imply

P(48)=1—24t+0(4(t), 1=3} 1,

Then the following difference-differential equations for the prob-
abilities P,(t), n=0,1,2,-.., can be easily derived

dPyt) _
5 AP(?)

d’:l"t(t) =§l AP, ()—AP(t), m=1,2,---, m=min {n, k} .

Multiplying the n-th equation by %" and summing for all n=0, 1,
2,--- we get for the generating function

h(u, t)= io P, (tyu"
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the differential equation

w=—1[l—gk(u)]h(uy ), gw= kgl DU, P,=A4/2.
which implies

Rh(w, t)=C(u) exp {— At[1—g.(u)]}
where the function C(u) is determined by the initial condition

Py(0)=P[X(0)=0]=1.

Thus
Cw)=h(x, 0)=33 P,(0)s"=Py0)=1,
and
5.2) h(u, t)y=exp {— At[1 —g.(uw)]}
which is the p.g.f. of a Poisson distribution of order &k with p.f.

(5.3) P,,=-$Te“‘ Aty 2258, -+, MIALE)

=—1'-e‘“ Sn_.‘ tT, (A 225y« +, m!R,) , m=min {n, k}
n! 7=0

and factorial moments
(5-4) Mn)= Tn;k(ztﬂ(l)! ltll(z)r Tty Zt#(m))

=1—Z—0 (Zt)rTn,r;k(‘u(l)y OV [‘(m)) ’ m=min {n’ k}

where
k
#<,>:rz‘,=j(r),,2,/,l, i=1,2,--+, k.
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