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Summary

Let x,=y,+z;, t=1,---, n, and write £, < - - - £%(,,, With correspond-
ing notation for the ordered y; and z,. It is shown, for example, that
T max (Yw+2p41-0)y r=1,---,n. Inequalities are also obtained for

i=1,000,7

convex (or concave) functions of the x,,. The results lead immediately
to bounds for the expected values of order statistics in nonstandard
situations in terms of simpler expectations. A small numerical exam-
ple illustrates the method.

1. Introduction

Let X,=--:-=X,, be the order statistics formed from random vari-
ables Xj,---, X,. Smith and Tong [6] have developed inequalities for
convex (or concave) functions of the X, ¢=1,---,n, when X, is ex-
pressible as a sum of two other random variables, X;=Y,+Z,. The Y,
are not necessarily independent or identically distributed, nor are the
Z,. In applications the Z; are often constants, Z,=3,, i=1,---,n. The
inequalities are in terms of the ordered Y, Z, or 8; and are useful
whenever, for example, EY,, and E Z, can be handled more easily
than E X,,.

Of the order statistics only the maximum is convex (and the mini-
mum concave). In this note we derive a simple inequality (Theorem 1)
that holds for order statistics of any rank. We also strengthen one of
the results of Smith and Tong [6] for convex functions of order sta-
tistics. Our results hold for any numbers x,, y,, 2 linked by z,=y,+
2, 1=1,---,n. Applications to bounds for the E X, are immediate.
A small numerical example illustrates our methods on a normal sample
with an unidentified outlier and permits some comparisons with the
inequalities in Mallows and Richter [3], Arnold and Groeneveld [1], and
Nagaraja [5].

* Research supported by U.S. Army Research Office.
Key words and phrases: Order statistics, convexity, majorization, outliers.

551



552 H. A. DAVID

2. Inequalities for ordered sums

We begin with an inequality for an ordered z-value in terms of the
ordered y and z values, where z,=y;+2;,, 1=1,---,n. It will be con-
venient to write the ordered z; in either ascending or descending order :

(1a, 1b) THS S OF Ty 2%
with corresponding notation for the ordered y, and z,. Then clearly
(2a, 2b) T SYur+2u TnZ2Yo+20
and, with range x,=x,;—%,, etc., one has
(3) range x,<range ¥,+rangez; .
The results (2) may be generalized as follows:

THEOREM 1. If x,=y.+2;, 1=1,---, n, then with the notation of (1)
we have for r=1,---,n

(4a) x[’]éijfl?fl, Yeat+2er41-0)
and
(4b) Ly max Yo +2ri1-0) -
ProoF. For some ¢ in {1,---,r} and some j in {1,---,n} suppose

that #,>¥u+24-0. A necessary condition for this to hold is that
either y,>yu; or 2,>2,4_4. Thus at most (i—1)4(r—4i)=r—1 of the
x, can exceed Yu +2, 41— 1.€., TSYry+2a1-ny 1=1,-+, 7, which is
(4a). The proof of (4b) is similar.

Comment 1. Equations (4a) and (4b) may equivalently be stated as

ig‘f‘:}fr (?/(t)+Z(r+1-¢))éx(7)§./=l,¥?’iﬂl_r Yar1-pF2a-14p) -

Comment 2. The bounds in (4) are attainable. In (4a) equality in
the form ;,;=%u;+2-41-4 1S achieved if and only if there exists j such
that y,=y; and 2,=2;,.1-;. For example, x,;=y+2 if there exists
j such that y,=y,; and 2z,=zq;; in words, equality is achieved if y,
and z, are the largest or, in case of ties, one of the largest y’s and 2’s,
respectively.

k
Frequently the sum S,=3] 2,; of the k largest x; is of interest,
i=1

k=1,--.,n. In obtaining inequalities for S, one can do better than
merely add the first & inequalities of (4). Thus, it is obvious that



INEQUALITIES FOR ORDERED SUMS 553

(ba) S éé Yy +20) -

To deal with inequalities in the other direction note that from (4b)

Slzx(,,,g ~nllax (y(i)+2<7.+1-n) .
i=l1,000,m

Let x{;, i=1,--+,n denote the » sums ¥, +2u,1_;, arranged in ascend-
ing order of magnitude. Then x/,, is an attainable lower bound for
T If To=2ly, With &4 =Yw +2m-n» (83Y), h=1,--., n, we note that
%(n-1y is an attainable lower bound for z_,,, where here

xfn-1)=jglaxn Yep+2ami-p) -

J#i
Repeating the process we have the sharp inequality
(5b) Si=_ é‘;_k Wl -

The results (5) may be extended from S, to a convex linear func-
tion ! of ordered z;, viz. l:i} ¢%y with ¢,=<..-<Ze¢,. To see this, note
that -

l=c,Sa+(c;—¢)Si+ -+ - +(Ca—Ca_y)S;

so that from (5) we have easily for ¢,=0

(6) E Gt%-)élég]l c(Ywr+2w) -
If ¢.<0, €ny =0, m=1,--., n, equation (6) continues to hold since ! may

be split into

21Cxm+ 32 6%
i=1 i=m+1
and the lower end counterparts of (5) applied to the first sum.

The right hand inequality of (6) is essentially the same as that in
Theorem 2.1 of Smith and Tong [6], where majorization arguments
(e.g., Marshall and Olkin [4]) are used. Our lower bound in (6) is, how-
ever, superior to theirs, viz. 3} ¢,(¥w +2u)-

Clearly it is also possible to generalize (3) to

E di(@r—2w) = g—_.: aYri—Yw)+ E di(zi—2w)

where d,=---=d, and m=n/2 or (n+1)/2 according as = is even or
odd.

Finally, generalizations to the case x¢=é %, t=1,---,m and p a
=
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positive integer (p>1), are straightforward. For example, in obvious
notation, (4a) generalizes to

. b4
T =min 121 L35 »

where the minimum is taken over all positive integers 4, for which

p .
¢2=1 1=r+p—1.

3. Bounds for the expectations of order statistics in nonstandard
situations

Let X,=Y,+Z, 1=1,-.-., n, where the Y, and Z; are random vari-
ables. Then provided only that EY, and E Z, exist, ¢=1,---, n, previ-
ous results can immediately be converted into corresponding inequalities
between expectations. For example, (4b) becomes

EX,z=zE iglaxr (Y(i)'i‘Z(rH—n)_Z_iglaX EYH+EZ, ),

TN

the last step following from Jensen’s inequality.

It should be noted that no assumptions of independence and com-
mon distributions are needed in the above but some simplifying assump-
tions will usually be invoked in applications. A case of special interest
occurs when the Y, are iid and the Z, are constants, say Z,=d;, i=1,
-++,n. We consider an example of this kind. Other applications are
given in Smith and Tong [6].

Sample with one outlier. Let Y;, 1=1,.-.,n, be iid, Z,=¢>0 for
some unknown value of 7 and Z,=0 otherwise. Then the X, are a
sample with an unidentified outlier.

From (4) we have for r=1,...,n—1
(7a) EY,<E Xp=min (E Y0, E Y, +9) ,
and, for r=n,
(7b) max (E Ye, EY,+0)SE Xw=EYw+d .

As a small numerical illustration we take the Y; to be independ-
ent normal N(0,1), n=5, and 3=2. Results are presented in Table 1.
In this case it is possible to obtain exact values for E X,,, (David et
al. [2]) but the bounds can easily be calculated for general patterns of
the 9, in the case of any distribution for which E Y., the expected
values of the order statistics, are available.

In our example the bounds for E X, are rather wide and may be
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Table 1. Expected value, E X(), of r-th order statistic in a standard nor-
mal sample of size 5 in the presence of an outlier with mean =2

E X
r EYwy
lower bound(7) exact value upper bound(7)

1 —1.1630 —1.1630 —1.0316 —0.4950

2 —0.4950 —0.4950 —0.3054 0

3 0 0 0.2698 0.4950

4 0.4950 0.4950 0.9167 1.1630

5 1.1630 1.1630 2.1504 3.1630

improved as follows :
(a) E Xy =2 since E X,,=0, a result that follows, for example, by a
majorization argument (Marshall and Olkin [4], p. 348).
(b) E X;=2.8 since E X,,<E X+(n—1)(E S*n)"2, where (n—1)S*=
) (X,— X)* (Nagaraja [5]); E X=0/n and E S*=1+0%n.
It will be clear that while methods (a) and (b) lead to better bounds
for E X, in the present instance, they will not necessarily do so. Both
these approaches are confined to X, or other convex functions such

as i} X (with corresponding results for lower extremes). For or-
i=n+1-k

der statistics that are not extremes our methods tend to give much
better bounds than other approaches. Note that, as a result of the out-
lier, the expected value of the sample median has increased from 0 to
0.2698 with bounds [0, 0.4950]; corresponding figures for the trimmed
mean based on the three central order statistics are 0.2937 and [0,
0.55217].
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