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Summary

Kernel estimators of conditional expectations and joint probability
densities are studied in the context of a vector-valued stationary time
series. Weak consistency is established under minimal moment condi-
tions and under a hierarchy of weak dependence and bandwidth condi-
tions. Prompted by these conditions, some finite-sample theory explores
the effect of serial dependence on variability of estimators, and its im-
plications for choice of bandwidth.

1. Introduction

Let {X,; t=1, 2,---} be a strictly stationary real-valued vector stoch-
astic process and M be the o-field of events generated by X,, a<t<b.
There is frequently interest in measuring the effect of a stationary g¢-
dimensional M/**-measurable vector Z,, =0, on a stationary M,/ -meas-
urable scalar Y,, 0<b=<c. In particular when E|Y;|<oc one wishes to
estimate the regression function m(z)=FE(Y;|Z,=z2) for values z¢ R
In parametric time series analysis it is assumed that m(z) is a given
function of z and finitely many unknown parameters; moreover that
some independence properties hold between the U,=Y,—m(Z,) and Z,
for s<t and all ¢, or between the full sequences {U,} and {Z,}. Ex-
amples are time series regression models and distributed lag models
with stochastic regressors, and autoregressions. Following [20], [21],
we study a nonparametric estimator of m(z) which does not rely on
such assumptions and is particularly of value at the exploratory stage,
especially when non-Gaussianity or non-linearity is suspected, where
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despite some recent advances in the theory of nonlinear time series
models, considerable obstacles hinder a parametric approach.

We observe X, for t=1,---, T. Introduce a real, integrable, non-
null, bounded function on R?, denoted k(z), and a g-dimensional positive
definite matrix k, of functions of 7T, which —0 as T—oo. We use
the abbreviation K,,=Fk(h7'Z,)). Because our results will concern point-
wise convergence we choose Z, so the point of interest is z=0, w.l.o.g.
We estimate m=m(0) by m,=g,[fr, where

fT:(T'HT)_l ;’ K.; , gr=(T"H;)™ ‘?" YK,

and H, is the determinant of h,, >)'=3>7, E”=§_.‘1T"‘, T'=T—a, T"=
T—max (a, ¢). Thus m, is a kernel regression estimator of the Nad-
araya-Watson type, apart from end-effects. We assume w.l.o.g.

ALl an k(z)de=1.

Throughout we assume also
Al1.2 Z, admits a density, denoted f(2).
Then f, is the usual kernel estimator of f=f(0).

In this paper we establish pointwise convergence in mean square
of fr to f, and pointwise convergence in probability of m, of m, when
the origin is a continuity point of f(2) and m(z) respectively, under
minimal moment assumptions on Y, and under various mixing condi-
tions on X,: strong mixing, ¢-mixing and x-mixing. Such conditions
can variously be checked for a number of processes of interest in time
series analysis, including linear and nonlinear moving averages, linear
autoregressions and autoregressive moving averages, Markov processes,
and many nonlinear functionals of Gaussian processes, under suitable
conditions on the autocorrelations of the Gaussian process; see eg, [13],
[16].

Consistency results that may be compared to ours are in [8], [20],
[21], but these papers assume X, is Markovian and our more general
weak dependence conditions reveal a possible trade-off between strength
of serial dependence and desirable bandwidth size, supporting the view
that selection of bandwidth should ideally be influenced by the presence
of serial dependence, as well as by marginal features of the process
and the size of T. Indeed in the case of a Gaussian process we ex-
amine also for finite T the relationship between its auto-covariances
and those of K,,, demonstrating that positive autocorrelation in the
process tends to inflate the variance of a density estimator, and that
negative autocorrelation may have the same effect. For a class of
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Gaussian processes, and again for finite 7, we show that variance can
be reduced by increasing H,. Rates of stochastic convergence, like
those implicit in, eg, [6], [14], [15], [19], can be established under strong-
er conditions than ours, but we choose to impose (so far as convergence
of m, is concerned) moment conditions that are minimal, see A4.2, A5.2,
and determine how weak a condition on mixing and bandwidth will then
ensure consistency. For other relevant work see, eg, [1]-[5], [7], [9],
[10], [18], [28], [24]. Our earlier paper [19] gave central limit results
for similar estimators to those considered in the present paper, under
the strong mixing condition and for scalar X,.

2. Mixing conditions

Define functions a, ¢, ¢ on the integers such that for all s=1, t=1
and AeM;?, Be M3, |P(AB)—P(A)P(B)| is bounded by a(t), ¢(t)P(A)
and ¢(t)P(A)P(B). We say X, is strong mixing if «(t) | 0, ¢-mixing if
#(t) | 0, *-mixing if ¢(t) |0 (as t1o0). Let U and V be respectively
M- and M ,-measurable random variables. We use the inequalities
(see, eg, [17])

2.1) |Cov (U, V)|<4(ess sup |U|)(ess sup | V])a(?) ,
(2.2) |Cov (U, V)|=2(ess sup [UNE|V|¢(?) ,
(2.3) |Cov (U, V)|SE|U|E|V|¢(®) .

3. Consistency of f;
Let ||-|| denote Euclidean norm. We introduce assumption
A3.1 Either

(i) k(u) is bounded with compact support; or
(ii) |k(u)|=Cexp (—D|ul*) for some C, D, 0<C, D<o, where p>0
is such that lim ||k,||* log Hy > —o0; or
T —oo

(iii) % is bounded and integrable, |u||*|k(u)|—0 as ||u|— oo, and
for some C< oo, ||hr||?<CHj;.

Under A3.1 it follows from Lemma 8.1 of [19] that for any 4>0
3.1) sup |k(w)|/H;—0, as T— oo .
el >8/11hp |

A3.2 TH,— o as T—oo.

A3.3 f(z) is continuous at z=0.
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A8.4 For all t>a, (Z, Z,,,) admits a density, which is bounded uni-
formly in ¢ in a neighbourhood of the origin in R¥.

A35 (TH?)"3) a(t)—0 as T—oo.

- 1

A3.6 For any ¢>0, (TH2)™ 3] a(t)—0 as T— oo.
I eT

A37  (THp)" 31¢(t)—0 as T—oo.

A3.8 For any e>0, (THy)™' 3] ¢(t)—0 as T— oo.
- T
A3.9 X, is x-mixing.

THEOREM 3.1. Let Al.1l, Al.2, A3.1, A3.2 and A8.3 hold. Then
under either (i) A3.5; or (ii) A3.6 and A3.4; or (iii) A3.7; or (iv) A3.8
and A3.4; or (v) A3.9,

(3.2) E(fr—f)—0 as T—oo.

Proor. The LHS of (3.2) is P+Q where P=Var (f,) and Q=(Ef,
—f):. An extension of a theorem of Bochner (see [5], [20]), plus Al.1
and (3.1), implies @—0, whereas

(33  P=(I'H){Var (Ki)+ 5 Cov (Kir, Kuuir)}

G4  S(T'HY{@+D) Var (Ki)+ 3] 100V (Kir, K| -
By straightforward application of Lemma 8.2 of [19], Var (K,;)<CH,,
where henceforth C is a generic constant. By (2.1),
|Cov (Kir, Kisarrr)|S4sup|k(u)falt),  t21.
Thus, writing G,=(TH,)"' and a(a, b)=(TH;)-1$a(t),
(3.5) P=C{Gr+e(1, T},
to prove the Theorem under (i). When AS3.4 is assumed,
(3.6) |Cov (Kir) Kivarr,r)|=CHF
using Lemmas 8.2 and 8.8 of [19]. Thus for any N, 1<N<T,
3.7 P<C{G;+N|T+a(N, T)}

and the choice N~¢T with T—oo and then ¢—0 completes the proof
under (ii). Under ¢-mixing, (2.2) implies

|Cov (Kir, Kirasrr)|S2(sup k() E|Kir |§() <CHg(t) , 121,
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using also Lemma 8.2 of [19]. Thus, with ¢(a, b)=G, %‘, é(?),

(3-8) P<C{G,r+¢(1, T)},

resolving case (iii); with A3.4 also,

(3.9) P=C{G:+N/T+¢(N, T)} ,

so the proof under (iv) is completed as in (ii). Finally apply (2.3),
|Cov (Kiz, Kivari,r)|S(E|Kir)’'¢(t)=CH7p(t) ,  t21.

Thus,

(3.10) Pg(J{G,Jr T i ¢(t)}—>0

under A3.9, to deal with (v).

Unless «(1)=0, (i) requires at least TH?— oo ; on the other hand,
A3.2 suffices for (ii) when «(t)=0(t"°), 6=2. To distinguish between
(iii) and (iv), when ¢(t)=O0("') (iv) is satisfied with A3.2 but (iii) re-
quires that TH,/log T— . We have not established that all our con-
ditions are necessary for consistency, and the general, nonlinear nature
of k and our unwillingness to make more precise distributional assump-
tions on X, seriously hinder the derivation of necessary conditions.

4. Some finite-sample theory

Our conditions A3.5-A3.8, as well as a number of Monte Carlo
simulations carried out by the author, tend to support the intuition
that given two processes, one serially independent and the other de-
pendent, but with identical marginal features, a larger bandwidth might
often be chosen in the latter case in order to achieve comparable vari-
ances in finite samples. (The usual bandwidth conditions for the CLT
of nonparametric estimators, and asymptotic variances and MSE, are
by contrast the same for dependent processes as for independent ones,
see, e.g., [14], [15], [19], [20].) As usual, asymptotic theory provides no
precise guide to the choice of bandwidth for a given data set and,
though automatic procedures such as cross-validation can be devised,
these are computationally expensive and depend on a somewhat arbit-
rary choice of objective function, and as in spectral analysis may not
adequately substitute for a mixture of judgement, experience and trial
and error. We must add that a larger bandwidth typically carries the
penalty of increased bias, and it is also possible that the covariances
in P above could conceivably make a net megative contribution, mean-
ing that serial dependence might in some cases actually reduce the
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variance.

The influence of serial dependence and bandwidth, and their inter-
action, can be examined analytically for finite T in some special cases.
For example, let Z,=X,+ ¢, where X, is scalar and Gaussian with lag-j
autocorrelation p, and (w.l.o0.g.) EX,=0, Var X,=1. Varying g corre-
sponds to varying the point at which the density of X, is to be esti-
mated. Let k(z)=1(2|<1)/2, satisfying A3.1. By Price’s theorem ([11],
p. 87)

d 0K,, oK
4.1 2 Cov(Kir K, =E<—'T __.ﬂi)
4.1) 2y OV (ury Kopy)=E( S St
where the partial derivatives are generalized functions in this case.
After straightforward derivation (4.1) is seen to equal

4.2) Z;(_lip—ﬁ)‘/z exp {_%I?)_} {cosh (i_liTpfj_) —exp ( —1221512 >} ,

which is positive on {0<p,<1, g€ R, (p;, #)#(0,0), H,>0}. Thus if,
for example, p,20 for all j and p,>0 for some j, the contribution of
the covariance terms to P is positive, and increasing in the p,. Notice
that (4.2) need not be positive for all p,<0, in which case the auto-
covariances of K are not monotonic in p,, and negatively correlated X,’s
can give rise to positively correlated K’s. Indeed at =0 (4.2) is neg-
ative for all p,<0, so the K’s are positively correlated whether p, is
positive or negative. Thus, although we acknowledged above that the
covariances could make a net negative contribution to P, this outcome
may be rather unlikely, particularly bearing in mind that processes
with some negative p, will often have a number of positive p, also.
These observations seem also to suggest that our mixing conditions,
which ignore the sign of Cov (K,r, K,,,r), may produce sharper results
than appeared at first sight.

To carry things a stage further, we deduce from (3.3), (4.2) that

(4.83) P—(TH?)'Var (K,;)={(2zH?) ' exp (—H:—p?)
- [eosh (2H)—11} 3 (13T,

T
neglecting a term of O(Z p§>, which, on a nondegenerate set of {p,}
1

values, is smaller in magnitude than the right-hand side of (4.3), and
as s1jxplp,|—+0 is a negligible fraction of the right-hand side of (4.3).

The factor in braces in (4.3) is a positive, decreasing function of H,
whereas the summation is increasing in the p;. This approximate anal-
ysis suggests that the increase in variance owing to (predominantly
positive) autocorrelation can indeed be reduced by increasing H;; in-
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creased bias, thence in some cases increased MSE, may result, though
bias is often of smaller order than variance, to an extent depending
on smoothness of f and choice of k.

5. Consistency of m,
We now assume
A5.1  m(z) is continuous at z=0.
A5.2  E|Y,—m(Z)|<o; E(Y,—m(Z)||Z,=2) is continuous at z=0.
However, (unlike [21]) we no longer assume continuity of f(z) but

A5.3  f(») is bounded and bounded away from zero in a neighbour-
hood of the origin.

Like [21], we intensify A3.2 to
A54 TH;%1 oo as T—oo.

We likewise introduce A5.5-A5.8 by changing — to | in A3.5-A3.8;
A5.5-A5.8 are negligibly stronger than A3.5-A3.8 and are readily check-
ed in cases such as a(t) or ¢(t) is O(™) and H;'=0(T"), for suitable
values of ¢ and v. Our final requirement is satisfied for all reasonable
choices of k, and, like A3.1, allows for &k that are not everywhere non-
negative.

A5.9 For some >0, k(z)>0 for ||z||<e.

THEOREM 5.1. Let Al.1, Al1.2, A3.1, A5.1, A5.2, A5.3, A5.4 and
A5.9 hold. Then under (i)’ A5.5; or (ii)’ A5.6 and A8.4; or (iii)’ A5.7;
or (iv) A5.8 and A3.4; or (v)) A3.9

(6.1) plimm,=m .

T -0

ProOOF. For some 4>0,

(6.2) Ef,=H: {S“z“g k(h7'2)f (2)dz— | S k(hi'2) f(z)dz”

llz]|>8

= inf f(2) k(z)dz— sup |k(z)|/[Hr=2—0(1)>0

llzllss Sllziléﬁlllhﬂl lizll> 8/l pll

for large enough T, by Al.1, A5.1 and A5.3. For such T, m,—m~
S (Y,—m)K,r/>) K,r, so for any 5 such that 0<5<2,

P(my—m[>n)=P((T"H,)™' 2" (Y,(—m)K,r | >7")+ P(fr<7) .
Using (56.2), P(fr<7)SP(fr—Efr|>2—5)—0 by Tchebycheff’s inequal-
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ity and P—0, established in the proof of Theorem 3.1, on noting that
(i)~(v) imply (i)-(v) respectively. Now write
(T"H;)* X" (Y,—m)K,y =(T"H;)™ 3" UK,y
+(T"Hy)™' 2" {m(Z,)—m} K,r .

The second term —0 in L, by application of Lemma 8.7 of [19]. We
handle the first term by arguments based on truncated variables, U/
=UI(U,|<n), U/=U,—U/, for appropriate n. Let

R'=(T"H;)"' X" {U/—EU!|Z)}K.r ,
R'=(T"H;)" X" {U/'—EU/ | Z)} Kz

then the theorem follows if R'—0 in L, and R"—0 in L,. First con-
sider case (i)). We obtain (cf. (3.4), (3.5)), since U/ is M/’ -measurable
and E(U/|Z,) is M/**measurable,

(56.3) ER"”ZC{(TH?) ' Var (U/K,;)+n%(, T)} .
Now Var (U/K,;)<CnE|U,K,;| and by Lemma 8.2 of [19]
(5.4) E(U.K,y)<CH, {‘i}llg E(U,||Z,=2) sup f@+E|\U} .

Thus taking ¢ small and applying A5.2 and A5.3, Var (U/K;)<CnH;.
For any »>0 choose n=min [7G7', {n/e(1, T)}'"], so

(5.5) ER*<Cy.
Now

E\R"\2(T"H,)' 3" E|\U!K,;|S<2H:'E{E(U/’|| Z))| K1z |}
=C{sup E(Ul|Z=2) sup f(2)+ E|U!"]}
z||S3 z||sd

for some 3>0, using Lemma 8.2 of [19]. We have

E(UY|Zi=2) = E{|U,|I(U\|>7G7")| Z,=2}
+E{UI(UL|> {n/e(1, T)}"|Z,=2} .

For small 4, both terms on the right-hand side are continuous on the
set ||z||<dé ([21], p. 1388 and A5.2) and both |0 as T— oo because of
A5.4 and A4.5. Thus by [22], Theorem 7.13 lim sup E(U!||Z,=2)=0,

T —oo ||2||s3

and because of A5.2 and A5.5 imply E|U/’|—0 as T—oo, it follows
that R”—0 in L,. Then (5.5) implies FR"*—0 because 5 is arbitrary.
In case (ii)’ we obtain first, cf. (3.6), ER’<Cn{G;+nNT'+na(N, T)}.
Choose N=¢T for €>0, then >0 and n=min [yG7, (/)" {n/a(eT, T)}"
to give (56.5). In this case we have

E(U|Z,=2) < E(U|I(U\|>7G7")| Z=2)
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+E(UI(U|> (9/€)'?)| Z,=2)

+E(U(U|>{n]a(eT, T)}"*|Z,=2) .
As before the first term, and for fixed ¢, the last term, —0 uniformly
over |2]|<d as T—oo. As ¢—0 the second term vanishes and the
proof is completed as above. Similar methods are used for ¢-mixing:
in case (iii)’ (cf. (3.8)), ER*<Cn{G;+¢(1, T)}, so take n=G,+¢(1, T);
in case (iv)’ (cf. (3.9)), ER*<Cn{G;+¢(cT, T)+ne}, so choose n=min
((Gr+¢(eT, T))™, (9/e)¥}). Under *-mixing we obtain (cf. (3.10))

ER"SC(TH})™[Var (U/Kir) HEIU/Kir | 33 000
<C {Grn-i- T-! é ¢’(t)}

using E|U/K,r|<E|U,K,r| and (5.4). Choose n=7G:' and apply A5.2,
to complete the proof of the theorem.

6. Time series regression

Prompted by time series regressions that contain no lagged depend-
ent variables, there is some interest in the case Y,=m(Z,)+U,, where

A6.1 ({U,} is independent of {Z,}.
Then A5.2 becomes simply
A6.2 E|Uj|<oo.

By virtue of A6.1 we can impose a different mixing condition on the
residuals U, from those on X,. Let A(t) be the strong mixing coeffi-
cient for U,.

A6.3 (THy)"'3A(t) |0 as T—soo.
A6.4 U, is strong mixing.

THEOREM 6.1. Let Al.l, Al.2, A3.1, Ab.1, A5.3, A5.4, A5.9, A6.1
and A6.2 hold. Then under either (i)’ A3.5 and A6.3; or (ii)” A3.6,
A6.4 and A3.4; or (iii)” A3.7T and A6.3; or (iv)" A3.8, A6.4 and A3.4;
or (v) A3.9 and A6.3; or (vi)” A3.9, A6.4 and A3.4, then (5.1) 1s
true.

PrOOF. The first point at which the proof departs from that of
Theorem 5.1 is when ER" is first majorized, (5.3). Because U/—E(U/|Z,)
=U/—E(U!) is independent of Z, for all ¢, », we have, with a=

Gr 32 60)
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6.1) E(RY)<C(TH2)"! {Var (UNE(K%)+ i E|Ki K,z
+ |Cov (U, UL, )I} SCn(Gr +n)

in the cases in which A8.4 is not imposed. Thus choose n=min [5G7',
(7/B)**] and proceed as in the proof of Theorem 5.1; on combining with
Theorem 3.1, we have proved (i)”, (iii)” and (v)”. When A3.4 is as-
sumed, (6.1) implies ER"*<Cn(Gr+npg), where p'=H;B. Choose n=
min [yG7', (/8")*] and note that S(t) | 0 implies B’ | 0, to complete the
proof.

An example of a nonlinear time series regression structure of the
form Y,=m(Z,)+U, such that {Z,} and {U,} are independent, is in [12],
where Z, consists of lagged values of a scalar observable input variable
X, and m(Z,) is a bilinear function of the lagged X,, motivated by a
linear distributed lag model whose coefficients are themselves linear in
lagged X,. In [12] X, is assumed Gaussian, whence our mixing condi-
tions on X, are conditions on the decay of X,’s autocorrelations.
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