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Summary

The distribution of the errors of misclassification in procedures
based on dichotomous and normal variables is derived. The expressions
for E(e;;) and E(ey) are also obtained. The results in the paper extend
those of Chang and Afifi (1974, J. Amer. Statist. Ass., 69, 336-339),
using the earlier papers due to John (1961, Ann. Math. Statist., 32,
1125-1144), Subrahmaniam and Chinganda (1978, J. Statist. Plann. Inf.,
2, 79-91).

1. Preliminaries

Let us consider two random variables X and Y where X is dichot-
omous with the probability function

P{X=x}=6°1—0)=, =0,1

and Y, conditional on X=x, has the normal distribution N(g*, o**).
We assume that

g =p+ox a"’2=02+72x .
Then the vector W/=(X, Y) has the probability density function

1 1 =
Toe g e

2=0,1; —co<y<oo.

(1.1) f(u7)=0"(1_0)1—x[

It can be seen directly that

(1.2) E(W)= (ﬁ f(w)

Key words and phrases: Errors of misclassification, dichotomous variables, normal distri-
bution, distribution of the errors of misclassification.
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and
_[(6(1—0) 6(1—86) >
\Y% = .
ar (W) ( C o g r04-0(1—6)8
The marginal of Y can be determined from (1.1) to be

ol 1 IS SR
(1.3) o) =0 |y P~ )]

+(1—0){~/%w exp—%(y—ﬂ)’} ,

a mixture of two normals.

The problem we examine here is concerned with classification of
an observation w into one of the two populations I7,, II, where I, has
the pdf of the form

(1.4) W) =0:1—0)"(y; p$>, ) ,

for ©=1, 2. It should be noted that we are assuming here that the
conditional variances of Y under II, and II, are equal. However, the
Var (W|II,) and Var (W|II,) are not equal.

Such a model has been examined by Chang and Afifi [2]. However,
they have not considered the errors of misclassification. The reader is
referred for related work on the distribution of the misclassification
errors to Chinganda and Subrahmaniam [3], Subrahmaniam and Chinganda
[6], John [5], among others. For a discussion of the models involving
discrete random variables, reference may be made to Goldstein and
Dillon [4].

2. Classification: All parameters known

The log-likelihood ratio gives the following procedure for the ob-
servation w. Classify it as belonging to II, or IT, according as

@ __ ,,@®
@D fy— L+ o) £
g

()3

+zln (%)4—(1—90) In (%)zo .

2

2.1. Errors of maisclassification

There are two types of errors of misclassification with any classi-
fication procedure. Their probabilities are

e,,=Pr [misclassifying w into /7, when in fact w is from II}]
and

¢, =Pr [misclassifying w into /7, when in fact it is from I7,] .
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Since there is no difference in the techniques involved in their deter-
mination, we shall present details for ¢,. Thus, writing Z(x) for the
quantity on the left-hand side of the inequality in (2.1),

en="Pr [Z(z)<0|w € I1,]

» O 40 (pf— p®) 1-6
—(1—01)Pr[{y_ A 2# } = 0(0)2/1 +ln<1—0:><0‘

y~N(pP, o)

+6, Pr Hy_ #5";—#?)} (=) L <%><0|
2

2
a.(l)

Y~ N(?, o)

Algebraic manipulation yields

—(1_ ®_ (1-46)
2.2) ewamﬂ . f_(lw

saof-k @)

where @(-) stands for the distribution function of the standard normal
distribution and, for ¢=0, 1,

= (#gt)_‘ F(t))z .

2
o.(t)

Similarly, the expression for ¢, may be derived.

3. Classification when the parameters are unknown

Consider independent random samples of sizes n,, n, from each of
the populations. Denote by y{? the j-th observation from the ¢-th
population, of which the value of X is ¢ (¢x=0,1). Let n,=n{®+n{®
and

PO=—0 2 YT
n; Jj=1
(x) (z)
@? 1 q i

WO 3 W+ 3 05— ygr))z} '
1 ¢

It can be shown that the maximum likelihood estimates of the
parameters are, for i=1, 2,

A A oy A 2 v}
01 — ngl)/ni , ﬂSx) — yg.t) , a.(z) — s(z) .
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The likelihood classification rule is in this case to classify an observa-
tion w as belonging to II, or II, according as

1~y =an] (F2—75) {nﬁ”nz}
z ={ _Lge g)} %) 11 20.
(x)=1y 5 @ +7") o tin o A

For simplicity, in order to discuss the errors of misclassification, we
shall assume that 6,=6,. In this case, the last term in Z(x) is zero.
The classification statistic can be reduced to

2@)= -+ @7} @ -5 -

3.1. Errors of misclassification
Defining the errors of misclassification as usual, it can be seen that

o {[ Y _;_ 7o /‘Ez):l / d(z)} if 7O>7
(3.1) €=
/)] { [#ix) . ﬂr)-;-gg‘”) ]/a(x)} lf ?—/'EJ:) < ,!—jg.r) .

and a similar expression is obtained for e,.

38.2. The distribution function of e,
Let

G(2)=Pr {e,<z2} .

Then from (3.1), we have
(3.2) G@=1-0)[Pr [0{[ L@ +7)—pP [} <z,
7o—7>0)|
+olpr [of[ Lav+a0)— 0] o] 52,

7o—7>0)} .
Writing
u(i)=’,l_/(1i)+27§i) , ’l)(“=’_l7§i)—y§i) ,

the expressions on the right-hand side of (3.2) can be written in terms
of these random variables. Hence

3.3)  G@)=Q1—0)[Pr {u®<k®, v <0} +Pr {u®@=k®, v©>0}]
+0[Pr {u“’gkﬁl), ’l)“)<0} +Pr {u(l)gkgl), v(1)>0}] )
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where
KO=2{pP+0007 @), KO=2{u"~00@))

for 1=0,1. Since (u®,v?) are jointly BVN [u{, p$; 6§, 0§, pi2
where, for 1=1, 2,

o o a
pP=pP+pP, pP=pP— P,

)2 3 2 1 1
o =g = g® ( = )
n® ' n®

and
P = — ) (O + ") .
If H(z, z,; p) denotes the distribution function in the standard BVN

distribution with the coefficient of correlation p, then (3.3) is

(3.4) G(z)=(1—o)[H(’°§°"f‘("°) =g ,p§°,,>)+H ( Yl "(0),;»2‘:3)]

’
01(10) (0) 0-(0) (0)

+0[H<k§1)—#(ul) —p . : pﬁ’,,’)-l—H(#(“l)—kgl) ©sP . Pﬁlo))] .

’ ’ ’
o o® ey o®

From (3.4), the density function of ¢, is obtained by directly dif-
ferentiating the distribution function. Thus

(3.5) 9g(2)=2 2 61— )2 [q)(( 1)C“’)< (kﬁi’;(u-i).u.‘f)) /¢< ki”—Z,u&"))

20.(0
’ k()—- ® K$D — 20
oo S o St

C(t).._ { L5 +p(t)< k(fi) _(‘i)ﬂg) )} /(l—pﬁ?g)l/z .
gu

where

(t)

A similar expression can be derived for e, in each of the cases of
the distribution function and the density function.

4., Expected values of the error rates
The probabilities of misclassification have been found earlier. Thus
(41) 612=PI‘ [2 Y>g‘§x)+g7gz)“7§z), ygz)} if ygz)<:'7§z)
=Pr 2Y <y +77|97, 57} if 70>
Hence the expected value of e, (also called the unconditional probability
of misclassification) may be computed as
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(4.2) Eles]= 20(1 )~ Pr [7{° <7, 2Y >7"+ 7]
Z 0 (1—0)~" Pr [Fi°>¥°, 2Y <F"+5°] .

We note that in (4.2) (X, Y) is assumed to be from II,. Also, the pdf
of Y depends upon the value of 4, the conditioning random variable.
Thus, for 7=0, 1,

W=pr)

fli)=—m— exp |~ Ut

In evaluating the four terms of (4.2) we have to use the appro-
priate density for Y. Thus, setting t=0 in the first term on the right-
hand side, it can be seen that

Pr{7°<#", y1”+¥°<2Y}

o]t ) m (KO a0 )
- 2 2 2 2 ’ 4 2 2 .
(40.<0> +¢71(40) )1/2 (40(0) +0.(uo) )1/2 01(Lo) (4 0) + 1(‘0) )1/2

Using this and related results the expected value of e,, can be seen
to be

(4.3) E[fhz]=‘é0 01:(1_0)1“[@{_ ﬂ(g:))} +¢1——ﬁj)_—}

(4 a.(t)’ 0(0*)1/2

0 @ @) p(D)
a§
< =ﬂ /2’ Pvt’ 3pt2 z)]
(46" + a7V o (40" 4 {7V

In (4.3), we note that, for =0, 1,
EO=pO P, = P —

N 2 2/ 1 1
o = =g Loy L)
7P | n®
(i) n{ —n?

puﬂ ’
nO+ gD

as derived in an earlier section.
A similar expression may be derived for the expectation of e;.

5. Numerical results

It would be appropriate to recall the parametric structure of the
population under consideration. Under the model introduced, the pa-
rameters of the conditional distribution of Y given X=x are:
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Population I Population II
=0 P o ta; @
=1 mtd; o'+ patd; a4yt

This ensures that for either value of the conditioning variable X,
the disturbances in the populations are through the means.

Four parameter combinations are considered in the tables:
Model I  x,=0, p,=1, 8=0.5; o*=1, y*=1
Model I  x,=0, p,=2, d=0.5; o*=1, r’=1
Model III 4,=0, p,=1, 3=0.5; o*=4, =1
Model IV p,=0, p,=1, 3=0.5; o*=1, y*=4.

Model I is essentially the standard model with mean of I7, shifted
to the right. Model II represents a larger shift in the mean of II,.
On the other hand, Model III introduces a larger variance (both when
=0 and x=1). Finally, Model IV is similar to Model I with the ex-
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Figures I and II. Distribution Function of the Error Rate e;; for ni=n,=40.
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Figures III and IV. Distribution Function of the Error Rate e;; for n,=n.=40.

ception that the conditional variance of Y is larger under =1 than
that under £=0. It should be noted that the results obtained are con-
ditional on n{®.

Figures I-IV give the distribution function G(z) of e, under the
four models for n,=n,=40 and 6=0.5. Tables of G(z) for these and a
wider selection of ¢ and n are given in Balakrishnan et al. [1]. In
Table I the expected value of e, under the four models is given. In
order to examine the effects of estimation of 4, three estimated values
of 0 are used for different sample sizes.

The results of the numerical studies can be discussed in terms of
behaviour of G(z).

(i) A shift in the mean makes the distribution function G(z) rise
up more steeply. This implies that ¢, remains small with a higher
probability.

(ii) As the sample size increases, the distribution function ascends
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Table 1. E(eiz)=E(es) under Models I-IV (ny=n:=n)

A

n /] [ Model I Model II  Model III Model IV
20 0.25 0.15 0.3391 0.1908 0.4291 0.3503
0.25 0.3351 0.1861 0.4286 0.3484

0.35 0.3332 0.1847 0.4293 0.3476

0.50 0.25 0.3577 0.2095 0.4378 0.3843
0.50 0.3490 0.2050 0.4350 0.3793

0.75 0.3544 0.2070 0.4392 0.3849

0.75 0.65 0.3620 0.2247 0.4359 0.4079
0.75 0.3628 0.2252 0.4357 0.4085

0.85 0.3671 0.2277 0.4366 0.4124

40 0.25 0.15 0.3315 0.1833 0.4174 0.3454
0.25 0.3276 0.1819 0.4157 0.3428

0.35 0.3258 0.1816 0.4153 0.3411

0.50 0.25 0.3452 0.2031 0.4241 0.3755
0.50 0.3390 0.2020 0.4200 0.3687

0.75 0.3407 0.2031 0.4243 0.3685

0.75 0.65 0.3517 0.2221 0.4215 0.3946
0.75 0.3522 0.2223 0.4219 0.3940

0.85 0.3552 0.2231 0.4239 0.3961

100 0.25 0.15 10.3246 0.1804 0.4093 0.3398
0.25 0.3231 0.1801 0.4070 0.3374

0.35 0.3227 0.1800 0.4060 0.3363

0.50 0.25 0.3370 0.2007 0.4121 0.3657
0.50 0.3360 0.2004 0.4086 0.3618

0.75 0.3363 0.2008 0.4111 0.3614

0.75 0.65 0.3492 0.2205 0.4110 0.3871
0.75 0.3493 0.2206 0.4117 0.3869

0.85 0.3498 0.2210 0.4139 0.3872

rather steeply. Such a behaviour is to be expected. This indicates
that e, is large (with a high probability) when n is small while it is
small (with high probability) when = is large.

(iii) There doesn’t seem to be a marked effect of estimation of 4.
This is seen by the distribution function remaining relatively stable
over the different estimates of #. The table of expected values of e,
(Table I) further reflects this pattern.

(iv) An examination of Table I shows that E(e;;) is smaller when
the two populations are far apart. Other factors such as sample size,
variances do not seem to play any role in this regard. Nor is E(e;)
affected by the value of the estimate of 4.
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