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Summary

For statistical inference about several normal means, the hetero-
scedastic method was proposed by Dudewicz and Bishop (1979, Optimiz-
ing Methods in Statistics, Academic Press, 183-203). However, the
practical application in the multivariate case was not possible because
it had not been known how to construct the certain matrices required
in the method. In this paper, a construction method of the matrices
is given.

1. Introduction

We consider a statistical inference on means g,---, g, of k p-vari-
ate normal populations Nj(g;, 2), 2,>0, i=1,---, k, where g,’s and 3’s
are unknown, and J3,’s are different. When k=1, Stein [7] gave the
two-stage sampling scheme for the univariate case in which the power
for a test, a confidence coefficient for a confidence interval, and etc.
are completely free from the population variance. This sampling scheme
was generalized to the multivariate case by Chatterjee [1]. Using this
procedure, it is possible to give the heteroscedastic method proposed
by Dudewicz and Bishop [2] to overcome the complexity arisen in many
cases of comparison of several (k) normal populations with different
variances or covariance matrices. This is available to multiple com-
parisons, construction of simultaneous confidence intervals, ranking and
selection problems, and etc. However, in the multivariate case, it was
not possible to use the heteroscedastic method in practice up to the
present because although the existence of certain matrices was known,
an algorithm for calculation of the matrices was not known. In this
paper, we give the matrices required in the multivariate sampling pro-
cedure.
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In the sampling procedure of the multivariate heteroscedastic method,
we first take samples of size N, from each of k£ populations and compute

N
an =L, Seliee-soee-zoy,
y r=1

for +=1,.--, k, where y=N,—1=p. Then for each ¢, we define N, by
(1.2) N;=max {Ny+p" [c-tr (T'S))]+1} ,

where ¢ is a positive constant, T is a pX p given positive definite (p.d.)
matrix, and [y] denotes the greatest integer not greater than y. Note

that we use the same ¢ and T for all 1=1,..-, k. Next we take N,—
N, additional observations x{,,-- -, x§) and construct the basic random
vector z; (¢=1,---, k) in the following way :

We choose p matrices A{*: pX N;=[a,- -, aiR, @i 11, -+, aiR), =
1,--.,p, in such a way that
(1) aip=-.-=af,
(I1) ASE]N =e;, where jy: N;x1=(1,---,1) and e: px1=(0,---,0,1,

-, 0,

(I1I) A“’A‘“—(l/c)T ‘®S,‘, where A®: p* X N,=[A{", A{,-.., APT.
Then we define

(1.8)  z: pX1=[tr (APXD), tr (APX®),- -, tr (ALXV)],

where X: pX Ny=[x{",- -, X}, X311, -+, X§7)]-
The heteroscedastic 1nference method is based on the vectors z,
++, 2. The distributions of 2, and the statistics based on these ran-
dom vectors are fully independent of the population covariance matrices.
Hyakutake and Siotani [4] and Hyakutake, Siotani, Li and Mustafid [5]
gave the asymptotic approximations for their distributions. _
Our purpose is to find the matrices A®=[A{",..., APY, i=1,..-, k,
which satisfy the conditions (I), (II) and (III), for practical application.

2. Main result

In this section, we give a method of constructing the matrices A%
=[A{",..., AP") which satisfy the conditions (I), (II) and (III). This
construction is done independently for each population in the hetero-
scedastic method. Since a result from one population does not affect
results from other populations, we can drop the suffix ¢ without loss
of generality.

First of all, we put A=[A],---, A}]'=[A,; B], where 4,: p*X(N—m)
=[ay, -, a]=@Jy-n, B is a p*Xm matrix, and PP <m<N-—N, by (I).
From (II), Ajy=[4s; Bljy=(N—m)a,+ Bj,.=e, hence
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(2.1) a=—"—(e~Bjx),

where e: p*xX1=(el,---, e;)’. Substituting (2.1) into (III), the condition
(IIT) is written in the term of B as

2.2) lT-*®S-*=B[Im+ 1 jmﬂn]B'
c N—m

1 . 1 . 1
_ ' B — Bj.e ',
N—m i N—m Jne't N—m ¢

which is a matrix quadratic equation. Let G be an m X m matrix satis-
fying
1

2.3 '=I,
(2.3) GG I+N—m

Jndm -

In general, the existence of such a decomposition of a p.d. or positive
semi-definite (p.s.d.) matrix and its algorithm are well known (see e.g.
appendix in Muirhead [6]). The matrix G may be a lower triangular
matrix or a symmetric matrix. A solution for symmetric matrix is
given by G=I,—(1/m)j,jo,+=(¥N /mVN—m)j,j.. Letting D=BG, the
equation (2.2) can be written in term of D as

2.4) (D—E)D—Ey=11-1®51-1 ¢¢,
c N
where
1 cenige L .,(I_ 1, .,>G= 1 .o
E N‘—‘m e]"l( ) N—m e]m m N me _N e]m .

To show the existence of the solution in the equation (2.4), it is neces-
sary that (1/¢)T'®@S"'—(1/N)ee’ is a p.d. or p.s.d. matrix. This is
shown by considering the inverse matrix of (1/¢)T'®S'—(1/N)ee’,
which is given by

(2.5) cTRS+(cTQS)ee'(cTQS)/(N—e'(cT®S)e) .

Since ¢>0, T is a p.d. matrix, and S is a p.d. matrix with probability
one, the first term of (2.5) is a p.d. matrix. The second term of (2.5)
is a p.s.d. matrix clearly because of €'(cT®S)e=c-tr (TS)<N by (1.2).
Therefore the matrix in (2.5) is a p.d. matrix, and hence (1/¢)T'®S™!
—(1/N)ee’ is a p.d. matrix.

Now we can choose a matrix K: p*xm such that

2.6) KK =178 1_ L.
c N
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Hence
@2.7) B=EG~1+KG-I=%e o+ KG!

and from (2.1),

(2.8) A=afly-n= Nim {e—(—}vejHKG“)jm}jfv-m
1 . 1 iy s
= ejly_n— KG ™ jnfhm -
Nerv Nem InJy

Thus we obtain

(2.9) A=t eitt KG |~ judhmi ]

We summarize the above argument in the following.

THEOREM. A matrixz A satisfying the conditions (1), (II) and (III)
s given by (2.9), where G: mXxXm and K: p*Xm are satisfying (2.3) and
(2.6), respectively, and P’Sm=<N—N,.

If we take G=I,—(/m)j,jn+ ("N [mvVN—m)j,j., the matrix A
in (2.9) is written as

@10)  A=—eii K|~ L=l
m

N NN—m)
JN=m

TN

Jndn] -
It is noted that the matrix A is not unique since K and G are not
unique.

3. Numerical examples

To give numerical examples of the previous result in the bivariate
case, i.e. p=2, we use a part of the Iris Data discussed by Fisher [3].
We take the first-stage samples of size N,=10, then the sample covar-
iance matrix is

5=(oss 1161)

Now, if we take ¢=1 and T=1, the total sample size N defined in (1.2)
is 14. Hence the additional (second-stage) sample size N—N, is 4 and
m=4. Then the total observation matrix is given by
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X_<70 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 61)

3.2 323123 2.8 2.8 3.3 24 2.9 2.7 2.0 3.0 2.2 2.9

Next if we take the lower triangular matrices K and G with positive
diagonal satisfying (2.6) with e=(1, 0, 0, 1)’ and (2.8), respectively, the
matrices satisfying (I), (II) and (III) are

A =(—.13723---——.13723 2.1580 .07143 .07143 .O7143>
' .10105--- .101056 —3.7926 2.7820 O 0 '

A=<—.17652---—.17652 —.17661 —.17651 2.1182 0 >
: .16619... .15619 .12196 10953 —3.6860 2.8926/

Then the basic random vector is
2=(7.366, 5.352)’ .

On the other hand, if we use the formula (2.10) with the same
lower triangular matrix K as before, we obtain

A= <—.11276- - —.11276 2.1751 —.03129 —.03129 —.03129)
' .06790... .06790 —3.6812 2.9369 .03123 .03123

A =<—.18556- -+-—.18556 —0.8535 —.08535 2.1194 —.08535>
’ 14143 .. 14143 .07098 .06192 —3.5814 3.0313

Then
z=(7.314, 5.244)' .

From the above numerical results, we can see that the choice of
a lower triangular or symmetric one as a solution of G will affect the
basic random vectors, but little affect.
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