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Summary

The alternative hypothesis of translated scale for the classical non-
parametric hypothesis of equality of two distribution functions in the
two-sample problem is extended to a scale-alternative including con-
tamination. The asymptotic power of rank tests and the two-sample
F-test under contiguous sequences of the alternatives is derived and
asymptotic relative efficiency of these rank tests with respect to the
F-test is investigated. It is found that some of the rank tests have
reasonably high asymptotic powers satisfied enough.

1. Introduction

Let X+, Xi,, and Xy, -, X;,, be two samples from populations
with continuous distributions F; and F, respectively. Further we set
X,,;=oe,+p for i=1,2 and j=1,---,n, where {e;; 1=1,2, j=1,---,
n,} are unobservable random variables, x is an unknown common nui-
sance parameter of F; and Fj, and ¢, and ¢, are respective scale param-
eters. Then our null hypothesis which gives F,=F;, is as follows.

1.1) H:o¢=0,=0 and {e,: t=1,2, j=1,---,n,} are independ-
ent and identically distributed with continuous distribu-
tion function F' (i.i.d. F).

For the null hypothesis H versus the scale alternative
A: o,#0; and {e,; 1=1,2, j=1,.--,n;} are i.id. F,
Mood [7], Ansari and Bradley [1], and Slegel and Tukey [9] proposed

rank tests based on statistics of form 2 ay(R,;) where N=n,+n,, R,

is the rank of X,, among the pooled observatlons {X,; i=1,2, j=1,

Key words and phrases: Rank tests, alternative hypotheses of scale translations and con-
taminated distributions, contiguity, asymptotic relative efficiency.
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«vo,m} (F=1,-+-,m,) and ay(-) is a real valued function defined on {1,
.++,N}. When F is a normal distribution function, Mood [7] showed
that the asymptotic relative efficiency of his test with respect to the
parametric F-test is 0.76 and Klotz [4] found that the efficiency for
the test of Siegel and Tukey is 0.61. We find that the vg,lues are too

small. Capon [2] proposed the normal scores test based on 21 E [{Z§52)]
i=1

where Z{® is the k-th order statistic from a sample of N standard nor-
mal variables and showed the asymptotic relative efficiency 1 relative
to the F-test under normal alternatives. Also Klotz [4] proposed the

normal scores test based on 121 {07 (R,;/(N+1))}* where @(-) is the stand-
=1

ard normal distribution function and showed that the test has the same
efficiency 1. On the other hand, Rieder [8] considered a null hypothesis
possessing contamination versus a location alternative including contam-
ination from the point of view of gross errors and an asymptotic mini-
max rank test under the hypotheses. Also Lehmann, in [5], considered
alternatives of three types including the alternative of a contaminated
distribution and investigated the power of linear rank tests under the
alternatives and, in Section 7A of Chapter 2 of [6], pointed out that
the location alternative may be an oversimplification. So we think that
the scale alternative is an oversimplification. Also in many cases, after
receiving treatments, we can predict that the observations give rise
not only to a variation in scale of a distribution but also to a slight
amount of contamination which cannot be represented by the simple
scale alternative. We consider in this paper the alternative of the form
K: g,=0¢’ and {e;; j=1,---,n,} are independent and identically distri-
buted with distribution function (1—e¢,)F(x)+e¢,J(x) for 7=1, 2, where
€,=0 for 1=1,2 and & +#¢, or 6,#0, and J(%) is a distribution function.
Here for the possibility of arguments on the asymptotic property, we
assume that there exists some increasing function G(u) with derivative
G’'(w)=g(u) such that G(0)=0 and G(1)=1 and J(x)=G(F(x)). If F(x)
is a distribution function such that the density f(x)=F'(x)>0 for xz ¢
(—o0, ©), there exists G(w) satisfying the above assumption without
loss of generality. The distribution functions of the observations under
the alternative K are given by

Fy@)=(1—e)F((x—p)/(06")+eG(F(x—p)/(oe’)))  for i=1,2.

In order to compare tests by the Pitman asymptotic relative efficiency,
we discuss the sequence of the above alternatives

1.2) Ky: F2)=(1—4/VN)F((z—p)/(o exp (4/VN)))
+@J VN )G(F((x— p)/(o exp (4/VN))))

for ¢=1, 2, where 2,=0 for ¢=1,2 and A,#4, or 4,#4,.
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In Section 2, we shall derive asymptotic normal distributions of the
rank test statistics and the parametric F-test statistic under K, and
obtain asymptotic relative efficiency of the tests. We shall be able to
verify that, when F'(z) is a normal distribution function, the asymp-
totic relative efficiency of the normal scores test with respect to the
F-test is 1 irrespective of G(u). In Section 3, we shall investigate the
numerical values of the asymptotic relative efficiency given by Section
2 and find that the asymptotic power of some rank tests including nor-
mal scores test is satisfying enough, but that the Ansari-Bradley rank
test and the quartile test do not have desirable asymptotic powers.

2. Asymptotic properties

As we consider the tests invariant with respect to location param-
eter u# and scale parameter s, we set =0 and o=1 for the rest of
this paper; then we may assume that the observations X,’s have the
joint density under K, defined by (1.2)

@) 0@ =]T T (A~ 2V ) (exp (— 4VN ) f(zslexp (4/VN))

+(4:/VN ) (exp (— 4/VN ))g(F(2.s/exp (4,/VN)))
X f(@ylexp (4./YN))} .

The joint density under the null hypothesis H defined by (1.1) is given by

(2.2) Px() =;[[ }T f(@y) .

We set Assumptions (1) to prove the contiguity introduced by VI.

1.1 of Hajek and Sidak [3] and to derive the asymptotic local power of
tests.

ASSUMPTIONS (1)
(2.3) The derivative of f(x) exists and
0<I(f)=|_{-1-af@If @ f@ds<+e ,

(2.4) g(w) is bounded and its derivative exists,
@5) lm | (oF @) —gF@N0)s @)

- S“w og(F(x))f{@)dz  holds,

@6) 1+ s @) @ds=—|"_ s F@)fiaxs,
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and
en |7 e ed=—1.
LemmA 2.1 Suppose that Assumptions (1) and lim (n,/N)=a, (0<a,
<1) for i=1,2 are satisfied. Then we get
28) [log {G:(X)/pu(0} AW 33 3 [lo(F (X)) -1}
— AL+ Xy F(X)IF XV 33 (@f2) Var [ulo(F (X)) 1)
— 441+ X ) (K] -0

where —~ denotes convergence in probability. Further the family of den-
sities {qy(x)} defined by (2.1) i contiguous to {py(x)} defined by (2.2).

Proor. Throughout this proof, we assume that (X,---, Xi,, Xu,
-, Xi,,) has the joint density py(v). The logarithm of the likelihood
ratio transforms the following expression.

(2:9)  log {g(X)/pu(X))
=log ]I T {(1— /YN )+(/VN g(F(Xijlexp (4/VN )}

+log TT T texp (— 4VN )F (X, fexp (44VN DIF (X))} -

Taylor’s series expansion of the first term of the above right expres-
sion yields

(210) 3333108 [1+ (/YN ) (o(F (Xfexp (4/F ) -1}
=(VN) 3 4 33 (0(F (X fexp (4/N)~ 1} - {1/(2N))
X312 3 {0(F(Xufexp (4/F )~ 1)+ (1/BNVN )
X312 5 (0F (X, Jexp (4N ) -1
[+ O b VT G(F (X foxp (VR -11T)
where 0<d,;<1. The condition (2.4) gives

(211) () Var (314 33 [0(F (X, fexp (4/VN )~ 1 {g(F (X, ) —~1}])

=1ﬁ=1 AYn/N)(E{9(F(Xulexp (4./¥YN)))—g(F (X))}
—[E{g(F(Xulexp (4/¥YN )))—g(F (X))} )—0 as Nooo.
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Here from (2.11) and the condition (2.5) we get
(AVR) 31 4 33 {o(F (Xyfexp (4VR ) -1}
~(UVN) 55 4 5 0(F (X)) + Elg(F (X, fexp (/YR )} ~2]
=(UVR) 33 4 3 ((F (X)) 1} + (B {0(F(X, fexp (4/N )
~E{g(F (X))
~(UVE) 5 & S HIEFXe)~ 1} — 3 add B Xg FX) X}

where Y~Z denotes that Y—Z converges to zero in probability. Fur-
ther the condition (2.4) and the law of large numbers show that the
sum of the remainder term of the right-hand side of (2.10) converges

to —i‘, (a;43/2) Var {g(F'(X;;))} in probability as N—oo. Also Theorem
i=1

V1.2.2 of Hajek and Sidak [3] gives, under the condition (2.7), the sec-
ond term of the right-hand side of (2.9),

log TT T {exp (— 4V S (X, fexp (4//F IS (X))
~ =3 VR 2 (L + X f XN X)) 1) S adif2

Hence we get (2.8) from the above arguments of the two terms on
the right expression of (2.9). Further applying the central limit the-
orem to (2.8), we get log {qx(X)/py(X)}—+ N(—0ai/2, 0}), Where —— de-

notes convergence in law and
(2.12) oﬁ=é a; Var [2,{g(F(Xy)) —1} — 4, {1+ X, f'(Xu)/ f(Xu)}] -

By Corollary VI.1.2 of Hajek and Sidak [.3], we find the contiguity.
The normalized two-sample rank test statistic is given by

§= {3 an(B)—ma] [V B0/ (NN—DN £ {aul)—an)
where E,N=k21:‘,l ay(k)/N.
THEOREM 2.2. Assume that, for some square integrable fumction
() such that S: {¢(u)—S: ¢(v)dv} "du>0,
(2.13) lim | {au(1+{@ND—g(@}du=0

holds. Further suppose that the assumptions of Lemma 2.1 are satisfied.



518 TAKA-AKI SHIRAISHI

Then the two-sample rank statistic S has asymptotically a mormal dis-
tribution with mean v and variance 1 under {qy(x)}, where

(2.14) v=va, Cov {$(F(X)), (2~ )9(F(X))
— (4~ ) Xf(X)]f(X)} ¥ Var {$(F(X))}
and random variable X has the distribution function F(x).

Proor. If we set

T={3) §F(X,))— .} [V, Var GECON ,

where $=§2;‘, ,55 #(F(X:,))/N, from Theorems V.1.5a and V.1.6a of Hajek
i=1 J=1

and Sidak [3], we get S— T—++0 under {py(x)}. Further from (2.8),

the central limit theorem shows that (log {gx(X)/px(X)}, T) has asymp-
totically a bivariate normal distribution with mean (—di/2,0)’ and co-

variance matrix <‘:§’ ’1’> under {py(x)}, where o; is defined by (2.12). So

_using LeCam’s third lemma stated in Lemma VI.1.4 of Hajek and Sidak
[3], we get that T has asymptotically a normal distribution with mean
v and variance 1 under {gx(x)}, which implies the conclusion.

When we put ay(k)=E{$UP)), N S:an Sw)du or ¢(k/(N+1)) where

U is the k-th order statistic, among a sample of size N from the
uniform distribution on (0, 1), the equation (2.13) is satisfied.

Next in order to derive the asymptotic power of the two-sample
F-test, we consider the test based on the following statistic which is
equivalent to the discussed F-test.

U=vN {3 (X~ Xfou—1)— 3 (X~ X Yjm -1} |
(53 (%~ X))
where X, =;V‘_,=i1 X, /n; for i=1, 2.

THEOREM 2.3. If the assumptions of Lemma 2.1 are satisfied, the
statistic U has asymptotically a mormal distribution with mean »' and
variance Var {(X—E(X))%}/[a,a:{Var (X)}] under {qy(x)}, where

(2.15) v'=Cov {(X—E(X)), (4—2A)9(F(X))
— (41— ) Xf'(X)/f(X)}/{Var (X)} .

Proor. If we set
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V=vN jz (X, — E(X))mi— jz (X,, —E(X))z/nz} / Var (X),

after a simple argument, we find that U—V—-0 under {py(x)}. From
the way similar to the proof of Theorem 2.2, we can show that (log
{gx(X)/px(X)}, V) has asymptotically a bivariate normal distribution
with mean (—¢%/2, 0)’ and covariance matrix <:§’ ’f) under {py(x)}. So

LeCam’s third lemma gives the result.

The square of the ratio of the asymptotic mean (2.14) stated in
Theorem 2.2 to (2.15) in Theorem 2.3 gives the asymptotic relative ef-
ficiency of the rank test with respect to the F-test.

COROLLARY 2.4. If the assumptions of Theorem 2.2 are satisfied,
the asymptotic relative efficiency of the rank test based on S with respect
to the two-sample F-test based on U for H versus K, is given by

ARE (S, U)=Var {(X— E(X))}[Cov {¢(F(X)), (24— 2)9(F(X))
— (4= 4)Xf'(X)[f(X)}T[(Var {¢(F(X))}
X [Cov {(X—E(X)), (41— 2)9(F'(X))
— (4= )X (X)) f(X}T) -

3. Numerical results of relative efficiency

We state types of scores, their forms and ¢(u) induced by the
scores in Table 1. To compare the rank tests based on these scores
with the F-test, we use the expression of the asymptotic relative ef-
ficiency (ARE) given by Corollary 2.4. Then if ay(:) is a normal scores

Table 1. Table of scores functions and functions induced
by their scores functions

Function ¢(#) induced

Type of scores Form by the scores
E[{Zy*}4]
1 D (u)}?
Normal scores or (O-(k/(N+1))}2 )]
Asymptotically optimum scores 2k /(N+1)—1
against scale alternatives for a @k/(N+1)—1) (22 —1) log {%/(1—u)}

logistic distribution xlog (k/(N—Fk+1)}

Asymptotically optimum scores
against scale alternatives for a —log (1—|2k/(N+1)—1]) —log(1—|2u—1])
double exponential distribution

Ansari-Bradley’s scores 1/2—|k/(N+1)—1/2| 1/2—|u—1/2)

Quartile scores sign (| k/(N+1)—1/2]|—1/4) sign (|u—1/2|—1/4)
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Table 2. Values of the asymptotic relative efficiency of the rank
tests with respect to the F-test under {g,{(x)}

G(u)=u*, 1—(1—u)* G(u)=2"|u—1/2|¢sign (¥ —1/2)+1/2

7=1 p=00 =1 p=00

(1) Normal scores
ARE=1.118 under scale alternatives (7=0)

(i) F is logistic

1.1 1.118 1.103 1.130 1.457
1.5 1.113 1.209 1.163 1.420
3 1.143 1.316 1.191 1.316
10 1.166 1.215 1.104 1.096
(ii) F is double exponential ARE=1.221 under scale alternatives (3=0)
1.1 1.221 1.212 1.249 2.018
1.5 1.209 1.411 1.324 1.910
3 1.278 1.641 1.383 1.641
10 1.323 1.417 1.198 1.186
(2) Asymptotically optimum scores against scale alternatives
for a logistic distribution
(i) Fis normal ARE=0.977 under scale alternatives (=0)
1.1 0.977 1.009 0.987 1.272
1.5 0.973 1.075 1.014 1.239
3 0.997 1.150 1.037 1.150
10 1.019 1.068 0.975 0.974
(ii) F is logistic ARE=1.144 under scale alternatives (=0)
1.1 1.145 1.113 1.168 1.853
1.5 1.136 1.300 1.231 1.759
3 1.190 1.514 1.278 1.514
10 1.219 1.298 1.096 1.067
(iii) F is double exponential ARE=1.244 under scale alternatives (=0)
1.1 1.245 1.223 1.288 2.566
1.5 1.228 1.517 1.406 2.367
3 1.330 1.887 1.489 1.887
10 1.384 1.514 1.184 1.155
(3) Asymptotically optimum scores against scale alternatives
for a double exponential distribution
(i) F is normal ARE=0.977 under scale alternatives (7=0)
1.1 0.976 1.004 0.990 1.389
1.5 0.973 1.063 1.022 1.306
3 0.996 1.142 1.034 1.142
10 1.007 1.042 0.961 0.949
(ii) F is logistic ARE=1.139 under scale alternatives (=0)
1.1 1.140 1.107 1.168 2.024
1.5 1.131 1.285 1.239 1.854
3 1.184 1.503 1.271 1.503
10 1.201 1.267 1.077 1.041
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Table 2. (Continued)

(iii) F is double exponential ARE=1.250 under scale alternatives (=0)
1.1 1.251 1.217 1.300 2.803
1.5 1.235 1.500 1.427 2.494
3 1.333 1.874 1.488 1.874

10 1.368 1.477 1.166 1.126

(4) Ansari-Bradley’s scores

(i) Fis normal ARE=0.608 under scale alternatives (=0)
1.1 0.606 0.696 0.652 2.415
1.5 0.595 0.910 0.762 1.994
3 0.672 1.234 0.805 1.234

10 0.706 0.830 0.551 0.512

(ii) F is logistic ARE=0.838 under scale alternatives (3=0)
1.1 0.840 0.767 0.906 3.519
1.5 0.825 1.100 1.071 2.831
3 0.927 1.623 1.105 1.623

10 0.920 1.008 0.658 0.562

(iii) F is double exponential ARE=0.938 under scale alternatives (3=0)
1.1 0.941 0.843 1.036 4.873
1.5 0.918 1.284 1.279 3.808
3 1.070 2.024 1.328 2.024

10 1.061 1.176 0.709 0.608

(5) Quartile scores

(i) Fis normal ARE=0.369 under scale alternatives (=0)
1.1 0.367 0.437 0.398 1.592
1.5 0.359 0.619 0.482 1.425
3 0.423 0.925 0.538 0.925

10 0.442 0.537 0.299 0.254

(ii) F is logistic ARE=0.547 under scale alternatives (»=0)
1.1 0.549 0.482 0.592 2.320
1.5 0.537 0.749 0.716 2.024
3 0.621 1.218 0.770 1.218

10 0.598 0.653 0.368 0.279

(iii) F is double exponential ARE=0.607 under scale alternatives (5=0)
1.1 0.610 0.530 0.672 3.212
1.5 0.592 0.874 0.853 2.722
3 0.714 1.518 0.927 1.518

10 0.687 0.761 0.391 0.302

function and F(x) is a normal distribution function, we get ARE (S, U)
=1 irrespective of G(u). For the other ARE, we show the values in
Table 2, restricting the scores functions appeared in Table 1; F'(x)
=normal, logistic, double exponential; G(u)=u*, 1—(Q1—u), 2*'|u—
1/2]F sign (w—1/2)+1/2 with k=1.1,1.5,3,10; and 5=(4,—2,)/(4,—4:)=
0,1, +00, where sign(x) denotes the sign of z. From Table 2, we
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can see that, in the case of normal scores, the values of the ARE are
always larger than 1, and that, in the case of the asymptotically opti-
mum rank tests against scale alternatives of a logistic distribution and
a double exponential distribution, the values are nearly equal to 1 if
F(x) is normal and are larger than 1 for the other distributions, and
that the ARE of the Ansari-Bradley test is not stable and that the one
of the quartile test is smaller than 1 in many cases investigated. Fur-
ther we can find that, when F(x) is a normal distribution function, the
normal scores test has the highest asymptotic power among those rank
tests in many cases investigated and that the power of the two asymp-
totically optimum rank tests against scale alternatives for a logistic dis-
tribution and a double exponential distribution is nearly same and, when
F(x) is a logistic distribution or a double exponential distribution, these
two rank tests have high asymptotic power.
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