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Summary

Efficiency properties of the Cramér-von Mises, Anderson-Darling,
Watson, and DeWet-Venter statistics for assessing normality are in-
vestigated. For these statistics, the approximate slopes are determined,
and the equivalence of ratios of limiting approximate slopes to limiting
Pitman efficiencies is established. From relative efficiency comparisons,
the Cramér-von Mises and Watson statistics perform rather poorly;
choice between the Anderson-Darling and DeWet-Venter statistics should
be made on the basis of anticipated alternatives.

1. Introduction

Let X, X;,- -+, X, be a sequence of independent, identically distri-
buted random variables with underlying continuous cumulative distri-
bution function F. We wish to test the null hypothesis that the X;
are normally distributed, that is,

1.1) H,: F(x)=0(x— p/o) , —ocoL u<L o0, ¢>0,

where @(-) denotes the cumulative distribution function of the standard
normal distribution, and g and ¢ are unknown.

A number of omnibus tests have been proposed for assessing the
composite hypothesis (1.1). The Shapiro-Wilk statistic and its variants
(Shapiro and Wilk [19], Shapiro and Francia [18], Filliben [12]) are es-
sentially correlation-type statistics: one would reject the null hypoth-
esis (1.1) for sufficiently small values of the correlation between the
ordered sample and the corresponding percentiles (or, expected order
statistics) of the standard normal distribution, for example. Versions
of the quadratic goodness-of-fit statistics Cramér-von Mises, Anderson-
Darling, and Watson have also been proposed for testing (1.1); these
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are described in some detail in Pearson and Hartley [15].

We shall focus attention on these three quadratic procedures, and
on the DeWet-Venter statistic (DeWet and Venter [7]), a statistic closely
related to that of Shapiro and Francia. In the composite hypothesis
setting (1.1) wherein the functional form of the cumulative distribu-
tion is assumed known but parameters are estimated, these various pro-
cedures are not nonparametric in nature, but have limiting null distri-
butions that depend explicitly on the assumption of normality. (The
limiting distributions are nevertheless parameter-free, however.) We
refer the reader to DeWet and Venter [7], [8], Durbin [9], [10], Durbin,
Knott, and Taylor [11], and Stephens [22] for results pertaining to
asymptotic distribution theory of the procedures.

Only limited comparisons have been made among these test criteria,
on the basis of simulation studies. Shapiro, Wilk, and Chen [20] claim-
ed that the Shapiro-Wilk statistic provides a generally superior omnibus
measure of non-normality, but their conclusion was later somewhat dis-
counted by Stephens [21]. Pearson, D’Agostino, and Bowman [16] have
also undertaken a rather extensive Monte Carlo power study, of both
omnibus tests and directional tests.

The purpose of this paper is to effect a comparison among the
statistics using the criterion of Bahadur efficiency. In Section 2, we
show that the goodness of fit procedures may be related to Bahadur’s
“gtandard sequences” of test statistics, and that the approximate slopes
of these sequences are readily calculable. In Section 3, we note that
the conditions stipulated by Wieand [24] are satisfied in our particular
setting, thereby allowing us to conclude that limiting Bahadur effi-
ciencies (that is, ratios of slopes) are equivalent to limiting Pitman
efficiencies. We use this fact in order to reexamine the skewness and
kurtosis alternatives to normality originally investigated by Durbin,
Knott and Taylor [11]. Not surprisingly, our asymptotic calculations
are in accord with the findings of Durbin, Knott and Taylor, of Stephens,
and of Pettitt [17]: the Shapiro-Francia statistic, which places heaviest
emphasis on tail behavior, is most sensitive to alternatives wherein
departures from normality are most pronounced in the tails; the
Anderson-Darling statistic is intermediate, being sensitive not only to
those alternatives previously mentioned, but also to alternatives to
normality determined by behavior in the central part of the range;
both of these statistics tend to outperform the Cramér-von Mises and
Watson statistics.

2. The test statistics and their approximate slopes

Given the sample X, X;,---, X,, let Yi=(X¢—)_fn)/8m 1=1,2,--+,m,
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where X',,:n“é]X, and s2=n"!3 (X,—X,)*. Let F,(-) and Q,(-) de-

Jj=1
note the empirical distribution function and the quantile function re-
spectively of the Y;:

F,,(Y):n-ljiz I(Y,sY), —oo<Y<oo,
=1

Qu(t)=Y('7c) lf k;;l <té%’ k:]-; 27"', n, 0<t§1'

Here, I(-) is the usual indicator function, and Y} <Y5H<:--<Y{, are
the order statistics of the Y,. We shall investigate the relative per-
formances of four goodness of fit statistics for assessing the null hy-
pothesis (1.1). These four statistics are:

(i) the Cramér-von Mises statistic

Wi=n|" [F.()-0(F)d0(¥);
(ii) the Anderson-Darling statistic

ai=n " FD)—-0X)OF) (10X )IdO(Y) ;
(iii) the Watson statistic

vi=n (" [R@-0)-"_F@)-0em) | dor);
(iv) the DeWet-Venter statistic D:=L,—a,, where

Li=n | 1Q.0)-0"®)Tdt

and a, is a centering constant computed by them (a,=O(log n)).

The asymptotic null distributions of W;?, A2, and U? are described
by Stephens [22], and that of D2 is given by DeWet and Venter [7];
however, few facts are known concerning their asymptotic power prop-
erties. Indeed, such power comparisons are complicated by the lack
of methodology for direct Pitman efficiency calculations.

We shall, therefore, compare the asymptotic performances of these
various goodness of fit statistics against particular classes of alterna-
tives, by using a criterion of efficiency introduced by Bahadur [2].
Bahadur considers the situation in which the probability distribution
of X, is determined by a parameter 6 which takes values in a set 6.
It is required to test the null hypothesis that some 6 in 6, obtains,
where 8, is a given subset of &. For each n, let T, be a test statis-
tic such that large values of T, are significant. Suppose that T, has
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an asymptotic null distribution, that is, there exists a probability dis-
tribution function G such that, for each ¢ in 6, P(T,<t)=G.t, 6)—
G(t) as n— oo for each ¢t. For given s=(x,, 2,,- - -, 2,), the approximate
level attained by T, is defined as L,(s)=1—G[T,(s)]. The rate at which
L, tends to zero when a given nonnull 4 obtains is regarded by Bahadur
as a measure of the asymptotic efficiency of the sequence of test sta-
tistics {T,} against that 6. If for each nonnull ¢ there exists a ¢(6),
0<ce< oo, such that n'log L,— —c()/2 as n— oo with probability one
when 6 obtains, the value ¢(f) is called the approximate slope of {T,}.
Given two sequences of test statistics {7}, {T®} with approximate
slopes ¢(6), ¢®(f) respectively, the ratio ¢(6)/c?(f) is known as the
approximate Bahadur efficiency of {7’} compared with {7T.®}. The
theory of approximate slopes and of a related concept, that of exact
slopes, is discussed more extensively in Bahadur [2], [3], [4].

It is in general a nontrivial problem to determine the approximate
slope of a given sequence {7,}. One useful method was described by
Bahadur [2], who defined {T,} to be a standard sequence if the follow-
ing three conditions are satisfied :

(i) T, has an asymptotic null distribution, G, which is continuous;
(ii) there exists a constant a, 0<a< oo, such that

log [1-G()]=—(at*/2)[1+0(1)] , as t—oo;

(iii) there exists a real-valued function b(6) on 6—86, with 0<b(0)< oo,
such that, for each @ in 6—6,,

lim P,{|T,/n'?—b(6)|>t} =0 for all t>0.
The approximate slope of the standard sequence {T,} is then
c(6)=ab*(9) .

We shall apply this method for the determination of the approxi-
mate slopes of the goodness of fit statistics, by showing that {W,},
{A.}, {U.}, and {D,} are all standard sequences; here, D,=SGN (L,—
a,)|L,—a,|”*. First, note that W?, A and U? are asymptotically dis-

tributed as i A2}, where Z,, Z;,--- are i.i.d. N(0,1) random variables,
i=1

and 2,>2,>:-->0 are the eigenvalues devolving from the integral
equations associated with their respective covariance kernels; further-
more, this sum converges in mean square and with probability one

(Durbin [9]). Similarly, D? is asymptotically distributed as é A(Z}—1)

(DeWet and Venter [7]). It follows that each of the statistics W,, A4,
U,, and D, has a continuous limiting distribution under (1.1); hence
we turn to the determination of the large deviation probabilities.
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Under the circumstances just described, the following large devia-
tion result obtains (Zolotarev [25]; Hoeffding [14]; Abrahamson [1];
Beran [5]):

log P@ liZE>t> =—(@¢/23)[L+0o(1)]  as t—oo.

Clearly, this result remains true with the Z? centered about their ex-
pectation.

It is now straightforward to find the approximate slopes of the
standard sequences {W.,}, {A.}, {U,}, and {D,} under various alterna-
tives. In this regard, we remark that Stephens [22] describes numer-
ical techniques for the computation of the eigenvalues 2, associated
with the statistics W2, A2, and U2, and indeed calculates the requisite
A, values; DeWet and Venter [7] explicitly provide the 2; for D;. Sup-
pose under a particular alternative, F,(-)—Gy(-). Then the approxi-
mate slopes ¢(f) of the standard sequences may be determined from
Table 1. In the following section we carry out this evaluation numer-
ically for various alternatives approaching the null case, and relate
these values to limiting Pitman efficiencies.

Table 1. Values of a and b%@) for calculation of approximate slopes

Statistic a b%(0)

W, 54.53 [Go(y)—D(¥))*dP(y)
[Go(y)—P()1*/[P(y)(1—D(¥))1dD(y)
[G,(u)—d)(y)]“dd’(y)—{S: [G,('y)—‘15(1/)]df1>(1/)}2

,[Git) =07 (@)fat

A, 10.17

I
.
u, 63.57 S:,
|

D, 3.

3. Comparison of efficiencies under local alternatives

Bahadur [3] emphasizes that the most important property of a
slope is its value in the immediate vicinity of the null hypothesis. Be-
cause the approximate slope and the exact slope of a test sequence
typically coincide in a neighborhood of the null parameter, the main
conclusions relevant to power considerations available from exact slopes
(cf. Bahadur [4]) also pertain to approximate slopes. Also of relevance
is Bahadur’s comment [2] that in one-sided testing problems, the limit-
ing approximate Bahadur efficiency of two asymptotically normal test
sequences as the alternative parameter converges to the null value
coincides with their limiting Pitman efficiency as the alpha level ap-
proaches zero. Wieand [24] has generalized Bahadur’s remark to in-
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clude test sequences with asymptotic distributions other than normal,
and those used in two-sided testing problems. In particular, for the
simple goodness of fit problem, Wieand computes the limiting approxi-
mate slopes of the square roots of the Cramér-von Mises and Watson
statistics against location and scale alternatives; since these statistics
satisfy his Condition III*, Wieand can invoke his theorem equating
limiting Bahadur efficiency to limiting Pitman efficiency for these sta-
tistics (see also Wieand [23], for further details).

That the square root of the simple Anderson-Darling statistic also
satisfies Wieand’s Condition III* for appropriate alternatives follows
from Gregory ([18], Theorems 4.1 and 3.1). Further, it can be shown
that Condition III* holds for the version of the goodness of fit statis-
tic with estimated parameters given that it is satisfied by the simple
statistic, since limiting distributions do not depend on values of the
parameters, and rates of convergence remain unaltered with asymptot-
ically efficient estimates. Similarly, it is not difficult to show that the
statistic D, also satisfies Wieand’s Condition IIT*. We conclude, there-
fore, that Wieand’s theorem remains true for the goodness of fit sta-
tistics with particular alternatives considered here.

Following Durbin, Knott, and Taylor [11], we consider two classes
of alternatives. The first class is based on an Edgeworth series for
the density g.(-)=G(-), specifically,

(3.1) 0 01, 0)=4(0) | 1+ OHw) + o .HW)|

where ¢(-)=@'(-), the standard normal density function, and H,(-) is
the j-th Hermite polynomial. As Durbin, Knott, and Taylor note, non-
zero values of 6, and 6, indicate departures from normality character-
ized by skewness and kurtosis respectively, which are heavily dominated
by behavior in the tails. (Clearly, the nonpositivity of g(y; 6, 6;) for
certain values of 6, and 6, preclude it from representing a density func-
tion globally. Nevertheless, the results in this section concerning g
remain valid upon restricting its range to where positive and renor-
malizing as needed, and careful attention to limiting arguments.)

The second class of alternatives is specified by

(3.2) G(y; 03, 6,)=2(y)+ 0, sin [3zD(y)]+0, sin [4=D(y)] .

Here, nonzero values of 0, and 6, indicate skewness and kurtosis—like
departures from normality respectively, but the departures should be
determined more by behavior in the central part of the range than
(3.1).
In Table 2 we list values of lim [¢(6)/6?] for the four goodness-of-fit
00,

0
statistics; we consider four alternatives, obtained from allowing one
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Table 2. Limiting values of c¢(6)/6* for the goodness of fit criteria
against sine and Edgeworth alternatives

Sine alternative (3.2) Edgeworth alternative (3.1)
Statistic Shift in skewness| Shift in kurtosis |Shift in skewness| Shift in kurtosis
(04=0) (6:=0) (62=0) (0:=0)
W, 27.27 27.27 3.34 7.7
A, 35.76 38.68 3.95 9.82
U, 28.92 30.17 2.63 9.09
D, 27.78 33.41 6.0 18.0

nonzero f in either (3.1) or (3.2). Recall that, the ratio of any two
values in a column represents a limiting (as 6 — 6,) approximate Bahadur
efficiency, which by application of Wieand’s theorem is also a limiting
(as a—0) Pitman efficiency.

Note that W, and U, are rather similar in terms of relative effi-
ciency, with perhaps W, to be preferred for skew alternatives and U,
for kurtic alternatives. However, this issue is moot, since each statis-
tic is convincingly dominated by A,. Note also the strikingly good
performance of D, against Edgeworth alternatives, where it is clearly
the statistic of choice. On the other hand, the Anderson-Darling sta-
tistic dominates it against sine alternatives, where tail behavior is of
less prominence. These findings are thus complementary to, and con-
gruent with, those of Pettitt [16], who examined the relative perform-
ances of these procedures at alpha levels more typically encountered
in practice. On the basis of these studies, we would recommend the
Anderson-Darling statistic as an omnibus procedure: in the absence of
prior information concerning the alternative of interest, it exhibits re-
latively good performance against a wide range of departures from
normality.

We conclude with the remark that the notion of Bahadur efficiency
can shed considerable light on the relative performances of goodness
of fit statistics in simple (parameters known) versus composite (param-
eters estimated) hypothesis testing problems. In the present context,
the simple gof hypothesis H,: F=® (no estimated parameters) ought to
be distinguished from the composite null hypothesis H, given in (1.1).
The former hypothesis might be tested with the Cramér-von Mises
statistic

Vi=n | [Fx)-0@1do@) ,
where F, here denotes the empirical distribution function of the origi-

nal sample X, X,,---, X,; and the latter, with W;2. We shall now use
Bahadur efficiency to assess the relative merits of V2 and W,! under
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various alternatives. Consider, then, the following possibilities:

(i) If H, obtains, then b%#)=0 for both V! and W}, and both can
provide level-a tests when compared with their appropriate null distri-
butions.

(ii) If F is normal, but with either nonzero mean or nonunit variance
(or both), then b%(6)>0 for V., and V! will asymptotically reject H,
with probability 1. V.? is an omnibus statistic here, but W, remains
a level-a test of H,, and its corresponding value of b%#) is zero.

(iii) Most interestingly, suppose F' is a non-normal distribution. Clear-
ly, it is possible to envisage alternatives for which 4*6) is identical for
{V.} and {W,}. (A key fact here is the observation that, from the
construction of a standard sequence of gof test statistics—e.g. {W,/v/ 7}
—the insertion of an O,(1) estimator for a parameter value does not
alter the limiting value of b*(4).) However, since the null distribution
of V! (under H,) is stochastically larger than that of W? (under H,),
it has a smaller large deviation probability (the “a” term) than W7,
and hence will have a smaller slope than W;? against these particular
alternatives. That is, the limiting Bahadur efficiency (equivalently,
limiting Pitman efficiency) of V! relative to W,? is less than one. This
provides theoretical support for an empirical finding of Stephens [21]:
namely, that against certain alternatives to normality, V;? can be con-
siderably less powerful than W.2. Professor Stephens concludes that
“it is better mot to have the true mean and variance available but to
estimate it from the data”, in these circumstances. Thus, although
one might argue that the goals and purposes of assessing H, and H,
may not be altogether congruent, both theoretical and empirical evi-
dence suggest that closer attention be paid to the relative merits of
statistics derived for one hypothesis but used in the other setting.
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