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1.  Introduction
Consider a nonlinear regression model
Y;=g/0)+¢:, 121

where 0 ¢ #c R* and {e;,, ©=1} are independent random variables with
mean 0 and finite variances under the true model. The true model
might be Y,=a,+¢, where {e;, 1=1} might not be in the range space
of {g.0), i=1, 6 €6}. The problem is to estimate § by the least squares
approach given that the process is observed upto time = and obtain
the asymptotic properties of the corresponding least squares estimator
(LSE). In contrast to the standard approach via normal equations for
the study of asymptotic properties, the author has proposed an alter-
nate approach via the study of weak convergence of the least squares
process. This method was used to study the asymptotic behaviour of
a LSE in a series of papers (Prakasa Rao [11]-[14]). Further more, in
the case when g,(0) is not differentiable with respect to 6, the standard
approach is not applicable. An example of a non-regular nonlinear
regression model where the new approach is found to be useful is
given in Prakasa Rao [12].

The asymptotic theory of the least squares estimator for multi-
dimensional parameter is discussed in Prakasa Rao [14] through the
study of the weak convergence of the corresponding least squares
random field. One of the basic conditions used there in is that
sup E|g,["<oco for some m>k and m=4 where k is the dimension of

the parameter space. Even though, for practical purposes, this con-
dition is not a severe restriction since the errors are likely to be
bounded, however, for theoretical reasons, it would be interesting to
relax this restriction. This condition is of a technical nature as it is
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mainly used to derive some fluctuation inequalities for the least squares
random field which are useful to obtain the tightness of the corre-
sponding family of measures generated on a suitable function space.

Here we study the weak convergence of least squares random field
under a different set of conditions and hence derive the asymtotic
properties of the least squares estimator.

In this approach, we relax the restriction on moments of {¢;} to
sup E |¢,**< oo for some 8>0. This condition does not depend on the
i

dimension of the parameter space. Our view point is similar to that
of Inagaki and Ogata [4] who use the technique of Huber [2]. Prakasa
Rao [8] used the method of Huber [2] in his study of the maximum
likelihood estimation for Markov processes.

2. Preliminaries
Consider the nonlinear regression model
Y,=g(0)+e, 121

where {g(8), 1=1} is a sequence of functions possibly nonlinear in 6
€ OCR* and {e;, 1=1} are independent random variables with mean 0
and finite variances under the true model. Let

QO =3 (Y=g )} -

An estimator 4, based on the observations Y;, ---, Y, is called a least
squares estimator if 0, is a measurable solution of the equation

Qn(é,.)=ian§ Q.(0) .

If g(6), 1<i<n are continuous in # and @ is compact, then it can be
shown that there exists a measurable solution 4, by using Lemma 3.3
in Schmetterer ([15], p. 307). Here after we assume that 6, is such
an estimator.

We assume that the following regularity conditions are satisfied.

(A) 3 [000)—g0IF>0  if 6,40, in 6.

(A;) ¢«0) has partial derivatives with respect to 6 for 1=1 and, for
any 60,€8, we denote the vector

(agt 6gf>
00, 00,
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evaluated at 6, by Fg(6,). Assume that there exists a neighbourhood
U, of 6, in 6 such that, for all i=1,

|9:(0)— 9:(66) — (6 — 60)'V 9.(00) | < i(60) |0 — G| for all eV, .
Furthermore
Tm L 5 a(f)<oo.
n
(As) Observe that

%VQ,,(())=§‘.1 [Y:—g(0)179.(6)

=S¥ 0)  (say).

Suppose that
E 74 Y, 0)=2(0)

exists where E denotes expectation under the true model. Suppose
there exists 6, € # such that 1,(6,)=0, 1=1,2, ---.

(A,) Suppose there exists a neighbourhood U, of 6, in 6 such that
the following conditions hold.

(i) RO=>5H20)—10) asn—e
where A(6)+4(6,) if 6+0,, 0 € U,.
(ii) 440) are continuously differentiable for ¢=1. Let

A,(ﬁ):-g-%‘(o—o—)— . Suppose

A(0)== 33 4(6)— 40)

|+~

uniformly in 6 € U,,.
(A;) Let
u(y, 0,d)= sup |7y, 7)—7:(¥, d)|.
lz—0l|sd

Suppose that for every compact Cc#, there are positive numbers d,,
H, and H, such that, for any 0<d<d, and any 6 € C,

Eu(Y, 0,d)<Hd, izl

and
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Eui(Y, 0,d)<Hd, 1iz1.

(A¢) {ei, 9=1} are independent random variables with Ee,=0, 1=1
and there exists >0 such that sup E|¢;,f"’<oo. Let ¢!=E el Sup-
i

pose mf 0i=0*>0.
(A;) For any fixed ¢, and ¢,

(i) 3 o000 900+ o™ (0.0 — 9o+ $in™ ") =K (Bu)pr+o(1)
and

) 33 [9400) — .00+ $im = @K *0)1-+o(1)

where K(6,) and K*(d,) are positive definite matrices.

(As) SUP |g:(00) — B0+ ¢n ") < M |||~
for some M< oo uniformly in ¢ and =.

(As) Let

(2.0) Ju(9)=Qu(0+¢n"") —Qu(6,) .

Suppose that there exists >0
2.1) lim lim P[ mf J,,(¢)27;] 1.

M—00 n—oo
We denote by N,(g, 3) the k-dimensional multivariate normal dis-
tribution with mean vector 4 and covariance matrix 3. We will com-
ment on the regularity conditions listed above later in Section 4 of
this paper. Note that (A;) implies the relations

(2.2) L 5o g0)7g0) — K(6) 88 n— oo
and
(2.9) —~ 3 F0d0IPg0) > K*(0) a8 m— oo

Observe that the condition (A,) implies that 8, ¢ B(6,, Mn~"?*) with prob-
ability approaching one as n— oo and M — o where B(6,, M) is the
closed sphere with centre at 6, and radius M in R*. Let B, denote
the sphere with centre at 0 and radius M in R*. We assume that M
and n are sufficiently large so that B(6,, Mn~"*)C U, given by (A)).
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3. Weak convergence

Clearly, if @, is a LSE minimizing Q,(6), then 8, minimizes Q,(6)—
Q.(6,) for any fixed 6,€ 6. Let 6, be as given by (A;). Define

Jo(#) =Qn(0o+¢n 1) — Qu(60)

as in (2.0). The following theorem can be proved by arguments analo-
gous to those given in Prakasa Rao ([14], Theorem 3.1) using central
limit theorem due to Eicker [1]. We omit the details.

THEOREM 3.1. Under the conditions (A,), (As) and (A,), the finite
dimensional distributions of the random field {J.(¢), |¢|]|<t} converge
weakly to the finite dimensional distributions of the random field {J(¢),
gt} for any fized >0 where

(3.0 J(¢)=¢'K*p+2¢'¢ ,
and & 18 N0, K). Here K(6,)=K, K*(0,)=K* are as given by (A,).
Let

Z$)=3 edg6)—9:0utn~"9)]
and
T.9)= 2} [9.00— g0+ n 9}

In the rest of this section we prove some lemmas leading to the
tightness and hence the weak convergence of the family of probability
measures generated by the random fields {J.(¢), ¢ € By} on a suitable
function space to be defined later.

THEOREM 3.2. Under the assumptions (A,)-(A,) stated above,

3.1) HmlimP{ sup |J.(¢)—Ju(d)|>e}=0
R

for every ¢>0.

Before we give a proof of Theorem 3.2, we shall prove two lemmas.

LEMMA 3.1. For any M >0,

v
-0 as n— oo,

(8.2) sup J,,(¢)—n“/’¢’{g 7Y, 00)}—%¢’A(0o)¢

lgllsM

Proor. It is clear that



480 B. L. S. PRAKASA RAO

(3:3)  JuB)—n" 3 0o 00— F A0

=Qu0r+9n7)—QuO)—" g’ 3\ 1Y, 0)— ¢ 4(00)

= By (Y ot )~ ST 09— t8 00t

0

and hence
(3.4)  sup |J@)—n 3 0¥ 00— 24/ A8
<M sup [|n- 39 Yo 00— ) —nn 5 (¥, 00)—A(0o)¢’.
OIEL = vn =1

Therefore Lemma 3.1 is proved provided

(3.6) sup

ligllsM

nY2 é 7]¢< Y, 0,+ N/% ) —n ié 7 Yy, 60) — A(6o)p

\ 20
as n — co. This in turn holds provided

»

-1y $ \_ _ ¢ 2
(36 sup ||ln3ln( Y, ”°+m> (Y 00) *f(””m)} 0
as n— oo
and
-1z $ \_ N
@ g i aloee ) —ais| o0

as n— oo. In view of (A;), the relation (3.6) can be proved by argu-
ments analogous to those given in Inagaki [3], p. 8. Observe that

R ¢ \_
3:8) Totre 9 K 1/2§11<00+ JW) A(0°)¢(
< sup [fn=1 32 4000] s a0
il 2= (By (A))

<M sup /2|1A‘,.(0;)—A(0o)||

1165 —08p| 1< Mn 1

SM{ swp _ 4@)—A@)I+  sup  l4E)-4@))-

le—0gl| < Mn~1 Ir=0y!1s Mn~

Assumption (A,) (ii) implies that

sup || 4,(r)—A(x)| -0 as m— oo
2

[r—6g! < Mn~1

and continuity of A4(z) in a neighbourhood of 6, implies that
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sup || 4(z)—A4(6))||— O as m— oo,
2

[r—0g|| < Hn =1/
This completes the proof of Lemma 3.1.

LEMMA 3.2.
(3.9) WS 0l Yoy 6) -2 Ny(O, K*)  as n— oo .
i=1

PrROOF. This result follows from a central limit theorem due to
Eicker [1] in view of (Aj), (Ag), (A;) and (A,).

Remark. In particular, it follows that
(3.10) 0 31 (¥, 0)=0,(1) -

PROOF OF THEOREM 3.2. We now estimate the probability

(3.11) P{ sup_|(@)—Ju@)>e}.
Ill¢H’SM
Note that
3.12)  sup |Jud)—Juy)l
”,1-’2”5(1
lg;llsM
<2 sup |J,)—n¢' 33 ey 00—+ 44009
lgllsM i=1 2
|0 DY 0|+ sup _|8AGN— i 0N
”1%”25”

<2 sup |J,8)— 1"’ 33 Yor 00— 2# 4009

lells

| 33 (¥, 00 |[+ddty

where 7 is the maximum eigenvalue of A4(6,). Lemmas 3.1 and 3.2 and
the remark (3.10) show that

(3.13) 1;1151 hmP{I sup |a(B1) — Ju(@2) | > €} =0 .
mezs”

This completes the proof.

Let C(By) be the space of real-valued continuous functions f on
B, endowed with the supremum norm. Clearly the random field
{J.(#), ¢ € By} has sample paths in C(B,) with probability one. Define
J(¢) by (3.0). The random field {J(¢), ¢ € By} has sample paths in
C(By) with probability one. Theorems 3.1 and 3.2 prove the following
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result from Prakasa Rao [9] or from the general theory of weak con-
vergence of probability measures in metric spaces (cf. Parthasarathy

(6]).

THEOREM 3.3. Under the assumptions (A,) to (A,), the sequemce of
random fields {J.(¢), ¢ € By} with sample paths in the space C(B,) con-
verge in distribution to the random field {J(¢), ¢ € By} given by (3.0).

In view of Theorem 3.3 and the remarks made at the end of Sec-
tion 2 it can be shown that

W0, —0) S N0, K*KK*-1)  as n— oo.

by arguments as given in Prakasa Rao [7] by using the theory of
weak convergence for probability measures on metric spaces.

THEOREM 3.4. Under the conditions (A,) to (A,), the least squares
estimator 1s asymptotically mormal 1i.e.,

Vi (Ba—0) 5 N0, K*KK*-)  as n— oo .

4. Remarks

We now comment on the regularity conditions stated in Section 2.
(A,) deals with identifiability. (A;) is a smoothness condition which is
used in Prakasa Rao [13] and similar related works of other authors.
(A;) clearly holds if the true model belongs to the family. Conditions
(A)) (i) and (ii) appear in view of the non i.i.d. nature of the random
variables Y;, 1=1. Condition (A;) is similar to the condition assumed
by Huber [2], Prakasa Rao [8] and Inagaki [3]. Condition (A,) is an
improvement over the condition that sup E |¢;["<oco for some m>Fk and

m=4 assumed in Prakasa Rao [14]. If ¢, are i.i.d. random variables
then the result in Theorem 3.4 holds even if =0 i.e., if E(e})=¢* is
greater than zero and finite. Conditions (A;) and (A;) occur in Prakasa
Rao [14] in the study of asymptotic properties of LSE. Relations (2.2)
and (2.3) are assumed in Jennrich [5] or Wu [16]. The condition (Ay)
can be checked in linear regression models with Gaussian errors.
Similar condition is verified in a non-regular non-linear regression
model in (2.11) of Prakasa Rao [12] and an analogous condition is
proved in Prakasa Rao [10] in non-linear regression model when the
errors are Gaussian in the scalar parameter case. We point out that
the rate of convergence of LSE is also obtained in Prakasa Rao [13]
under the stronger condition (C;) in that paper. It is interesting to
find whether (A,) follows as a consequence of (A,)-(A;). The usual ap-
proach adopted to prove an analogue of (A,) for likelihood ratio process
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in Inagaki and Ogata [4] does not give the required result in this
problem. It can be shown that, given d>0, there exists ¢,>0, 1=1, 2
and ¢>0 such that

P Z@>cliglll=cligll™*™>  if |Igll<dn'*, n=1

and

P[ sup IJﬂ(¢)|>cllE2]Sﬁ provided l+1<+vnd.

1sliglisi+l I

However these estimates do not give the bounds needed to prove (Ay).
Finally, we point out that an innovation in our approach here is that
the true model need not be a member of the parametric family with
which we started.
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