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Summary

A generalized Final Prediction Error (FPE,) criterion is considered.
Based on n observations, the number k of regression variables is select-
ed from a given range 0<k=<K, so as to minimize FPE, (k)=na*(k)+
ak{ns*(k)/((n—K)}. It is shown that if « tends to infinity with =, the
selection is consistent but the maximum of the mean squared error of
estimates of parameters diverges to infinity with the same order of
divergence as that of @. A meaningful minimax choice of a exists for
a regret type mean squared error, while for simple mean squared error
it is trivially 0. The minimax regret choice of @ converges to a con-
stant, approximately 3.5 for K=8 if m—K increases simultaneously
with n, otherwise it diverges to infinity with =.

1. Introduction

Consider a regression model
y=Xp(k)+¢ , e~N(, '),

where B(k)'=(B, Bay*++» Bx» 0,-++,0) is the vector of regression param-
eters, X is the nxX K design matrix and 0<k<K. We define (0)=0.
We call the above model “model k”, as k regression variables are in-
cluded. Assume that ¢* is unknown. Our problem is how to select a
model, k, from a given range 0<k<K, K=1, based on an observed
sample y'=(Yy,* -, Ya)- . . .

Assume that X is of full rank K. Let (k) =(5y(k),:: -, B(k), 0,---,
0) be the least squares estimate of A(k) under the model k. Define
B(0)=0. The residual sum of squares is then

n&(k)=|ly— XBE)|1,
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where | - || denotes the Euclidean norm.
The selection procedure considered here is the minimum FPE, cri-
terion (Akaike [1], Bhansali and Downham [3], Atkinson [2], Shibata

[9]). A model k, is selected so as to minimize
FPE, (k)=nd*(k)+akd*(K) ,

where #(K)=mnd¢*(K)/(n—K). As a loss function, we adopt the sum of
squares,

(1.1) Lk.)=||XA(k.)— X8I,

where B'=(8, B+, Bx) is the vector of regression parameters to be
estimated. The loss function (1.1) is connected with the prediction er-
ror of future observations at the same sampling points as those of ¥
(see Shibata [9], [10], Stone [18]). As possible values of «, it is enough
to consider only nonnegative o’s, since k,=K for «<0.

It is already shown (Shibata [10], [11]) that if ¥ is generated from
a model with infinitely many regression variables, 2 is an optimal choice
of a under the loss function (1.1). However, the situation is different

if y is generated from a fixed model k, which is small. For such case,
Shibata [12] analyzed the behavior of the risk

R(k)=E{L(k,)} ,

by using theorems of random walk. One of his analyses suggests that
the larger a the better in this case. A controversial point is the key
assumption that the underfitting risk is negligible. Such an assump-
tion is justified if the last nonzero coordinate of 8 is significantly large,
or if the size n of the observation is large for a fixed parameter 8 and
a fixed @. The present paper aims to find a theoretical guide of how to
choose a from the view point of the minimax principle, when the model
k, is small and the underfitting risk is not negligible. We do not in-
tend to propose any specific choice of a.

There are many papers in which an a greater than 2 is suggested.
Some of the authors recommend the use of an « divergent with =, like
in BIC (Schwarz [8]). On the other hand, Bhansali and Downham [3]
suggests the use of a constant «, for example, 3 or 4, for any size n.
The result in Atkinson [2] also supports such a choice. Thus a ques-
tion arises, a divergent o or a constant a?

In Section 2, to simplify our problem, a canonical representation
of R(IQ:,) and that of FPE, (k) are derived. In Section 3, the behavior
of R(k,) is analyzed. A minimax choice of « is unique but trivial a=0,

so that R(IE,) does not give any meaningful choice of @. Such difficulty
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can be overcome by introducing a concept of “regret”. The regret
here is defined as 3R(k.)=R(k.)—R(k,), since R(k,) signifies the risk for

a selection =k, when the model k, is supposed true. An approxima-
tion to the minimax solution in Section 5 suggests that the choice 3 or
4 can be justified if n—K is increased with n. Otherwise the use of
a divergent sequence is desirable. It is also shown in Theorem 3.1
that both the maximum risk and the maximum regret diverge to in-
finity with O(e).

A related work is by Hosoya [7]. He considered a similar problem
under the constraint ko—lgfc,gk., for a fixed k,. This constraint does
not allow any overfitting. We should note that the overfitting risk is
inevitable in selecting a model and indispensable for realizing the prin-
ciple of parsimony.

2. Canonical representation of the risk

Let Q be an orthogonal »xn matrix which transforms the design
matrix X into an n X K matrix
(o]
0 ’

where S is a KX K upper triangular matrix. An example of such @
is given by the Householder transformation (Golub [5]). Let S(k) be the
kxk principal submatrix of S. Then Gauss-Markov’s equation under
the model k is transformed to

rl(k)} {(Qy)l}

S(k) A =| - .

Buk)] L(Qy).

Putting W,=(Qy)./oc and p,=(QXB)./c for 1<k=<n, we can write

@1) L(k)=[|QX3(0) - QX"
=3} (@)~ QXD+ 3} (QXB)

k K
=S Wi—pw+ 3 yf} .

On the other hand, the residual sum of squares is written as

n

na'(k)=|1Qy—QXAR) '=0* > W?.

l=k+1

Since W,, I=1,-..,n are independent normally distributed random vari-
ables with mean g, and variance 1, ng*(k)/o* is distributed as noncentral
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K
x* with degree of freedom m—Fk and with noncentrality lz, #i, since
=k+1

prs=+ -+ =p,=0. R
We should note that k, is determined by whether the following

differences are positive or not;
(2.2) FPE, (k)—FPE, ()= {na*(k) —na*()} +a(k—1)d*K) ,
0=<k<I<K.

On the right hand side of (2.2), the first term

n&¥(k)—né(l) = <m§+l W,,’;) o

and the second term

(n—K)K)=( 3} Wi)a*,

are independent. If (k) is used in place of #@(K), the above two terms
are no longer independent. The use of #(K) is advantageous not only

for mathematical analysis but also for stability of £, (Shibata [12]).
Another advantage is that #(K) is an unbiased, as well as consistent,
estimate of ¢? if y is generated from a model %, in 05k, < K.

From (2.2), we can easily see that the minimization of FPE, (k) is
equivalent to the maximization of

2.3) Se=3 (Wi-al) in 0sksK,

where S;=0 and U=é&%K)/s’. Therefore, it suffices to analyze the be-
havior of the risk

Rt = B3 Wt 3 4],

i=k,+1

for &, which maximizes S, in (2.3).

We hereafter consider the transformed vector p'=(g,-:-, px) in-
stead of B. Then g runs over R¥ and p,=---=px=0 is equivalent
to Bri=---=Bx=0. We may assume that ¢*=1, since I::, is invariant

under changes of ¢!. For mathematical convenience, we sometimes as-
sume that y is generated from a model k, in 1=<k,<K, where a nota-
tion p(k,) is used in place of p to signify that p(k,) is restricted on R*.

3. Behavior of R(k,) and that of minimax solution

We first analyze the behavior of R(k,) for the case when 2(ky)
tends to infinity for fixed » and fixed k, in 1<k,<K.
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Let S,,0=0 and Skzl_éi“_.“ (W2—aU) for k=k,+1. Then, S, is a ran-
—M0

dom walk conditionally for given U.

THEOREM 3.1. For any fized n and K, a finite boundary value ex-
18ts,
—k,

0I)<1nm+&n—K;; am >9 be lgékhéglr,
1 m+-2

lim R(k)=kot

#(kg)—eo m=

and

py_E am _
3.1) R(k)=3 P(Fm+2,,._xg m—s ) , for k=0.

m=1

PrOOF. We prove (3.1) only for the case when ky=1. The other
proofs are similar. Let us define M= max S, W=—(W;—eU) and T=
1s5ks
max (k,—1,0). Then

(3.2) R(k.)—1=R(k,)—E (W,— p,)*

=E [{F?_(Wl—,ul)z} I<u<w>]+E {(M+aT)I(K>W)} ’
where I, is the indicator function of a measurable set A. We first
show that the first term on the right hand side of (8.2), which defines

the risk when k,=0, converges to zero as ¢ tends to infinity. Noting
that M =0 is independent of p,, we have, for the first term on the
right hand side of (3.2),

(3-3) E {| ﬂ‘f—(Wl—Pl)le(K<W)}

Spi P(M<W)4E {(W,— 1) Lac<w}

SpiP(W>0+E {(Wi—w)wso} -
Since W, in W=—(W?—alU) is normally distributed with mean g, and
variance 1, the probability P (W >0) exponentially goes to zero as g,
tends to infinity. Therefore the right hand side of (3.3) converges to
0. By the same reason, the second term on the right hand side of
(3.2) converges to
(3.4) E(M+aT) .

As it is proved in Shibata [11] that
(35) E(M+aT|U)= 3] P (h>emU|U) ,

we have the desired result by taking expectations of both sides of (3.5)
with respect to U.
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From the above theorem, noting that R(I::a) is an even continuous

function of u(k,), we see that max R(k,) exists and is finite. We there-
,"(ko)

fore find a minimax solution a=0 from the inequality
max R(IAc,,) =maXx max R(I},)_Z_ K=R(R).
I ky (ko)

There still remains a possibility of other nontrivial minimax solutions
existing. To prove the uniqueness we need the following lemma. The
proof is placed in Appendix.

LEMMA 3.1. The function

fi@=\" (= —w)g@—pdz

18 am imcreasing function of a, on 0<a=<a*(y) for any u such that
#'>1/2, and is positive for any a>0 provided that |p¢|>1. Furthermore,

(3.6) a*{0(2a)—1/2} —1/2<max f (a)<a’.

Here ¢(x) and O(x) are the standard normal demsity and the distribu-
tion, respectively, and a*(u) is the solution of the equation

(2| p|—a)=(2|p[+a) exp (—2|p|a) .

THEOREM 3.2. For the risk R(k.), the minimax solution a=0 is
unique.

ProOF. As is shown in Theorem 3.1, R(I?:,,) converges to
K+E [{FL}{_(WK'—/‘K)Z} I(W§<aU>] ’

when pg;,---, and pg_, tend to infinity but px is fixed. Put a=(aU)"*
and pg=px in Lemma 3.1, then

E [ {#k— (W — ) o <an|UT>0

a.s. for any |ux|>1 and for @>0. This implies that
max R(k,)>K
for any >0, and the theoremyis proved.

The theorem indicates that some kind of modification is necessary

for the risk R(IZ,), to obtain a meaningful minimax solution. From the
principle of parsimony, let us consider a “regret”

3R(k.)=R(k.)—R(k,) .

in place of R(k,). This regret measures how much the risk increases
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by using k., rather than using the true k,, for which the risk R(k,) is
constant k,. Such a concept of the regret was introduced earlier in
Shibata [9] by the name of “increase in risk”. It is called “oppor-
tunity risk” in Hosoya [7]. In the next section, we will analyze the

behavior of 3R(k,) and the existence of a nontrivial minimax solution.

4. Behavior of the regret 3R(k.) and that of minimax solution

The following theorem shows an asymptotic behavior of aR(I::,,).
The result plays an important role in the next section for obtaining an
approximation to the minimax solution by computer simulations.

THEOREM 4.1. The maxitmum regret max 6R(If:,,) diverges to infinity

I‘(ko)
with O(a) as a tends to infinity. For 3R(k.), the minimax solution of
a exists and 1s finite.

ProorF. From Theorem 3.1, the maximum regret
max aR(l}a)z max max BR(I;:,,)

M 0skgSK  p(ky)
always exists and is finite. The latter part of the theorem follows
from the first part, since the above maximum regret is a continuous
function of a=0. We prove the first part only for the case when £k,
=1. Notations are the same as in the proof of Theorem 3.1. Putting
a=(aU—M)" and pg=pg, in (3.6), we have

(4.1) a=max aR(IAc.,)gmax E[{g—W,— )} wew]ZE {£(@U—-M)} ,

where £(x)=x{P(2x'%)—1/2} —1/2 if x>0, otherwise 0. As « tends to

infinity, the random walk S,, 1<k<K drifts to —cc. The maximum
M then a.s. converges to 0. This proves the desired result.

An important implication of Theorem 4.1 is the following. If « is

chosen as a divergent sequence in m, the max R(k.) as well as the
l‘(ko)

max aR(l?:,,) diverges to infinity with n. Some of known consistent pro-
ﬂ(ko)

cedures have such a divergent sequence. For example, BIC by Schwarz
[8] has a=log n, and ¢ by Hannan and Quinn [6] has a=cloglogn for
some c¢>2. Furthermore, in the context of time series models, it is
proved that the FPE, procedure is strongly consistent if and only if
a=2loglogn (Hannan and Quinn [6]). However, in view of Theorem
4.1 such consistency is obtained at the cost of uniform boundedness of

R(k,) or aR(IQ,). The consistency of k, and the uniform boundedness
of the mean squared error R(l::,,) may not be compatible.
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SR(k,)

—1.04

|
T T T T T | #
0.0 2.0 4.0 6.0 8.0 10.0

Sharp fit —
Fig. 1. Regret ER(IE,) for large #, 05_12,,§K=2 and ko=1.

To illustrate the behavior of 3R(k.), a plot of 3R(k.,) is given in
Fig. 1, where K=2 and k,=1 with large enough n. We see that
BR(IAca) quickly converges to a constant as p, increases. This is the
fact proved in Theorem 3.1. The maximum of aR(I:ca) is attained at a
relatively small p;, but the value of the maximum itself rapidly in-
creases with e, as was already proved in Theorem 4.1. An interesting
fact is that 6R(IE,) is negative for a=2 around p;=0. This shows that
if g, is very small but not zero, then the mean squared error can be
reduced by fitting a smaller model k;—1 rather than fitting the true
model k,.

More generally, Theorem 3.1 gives a necessary and sufficient con-

dition for BR(IE,) being negative at py=-.-=p, =00 and p, =0,
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K—kg+1

4.2 P(F,,, o~ Lm_) 1
4.2) mZ:l fon-k pra <

In the case of Fig. 1, the condition (4.2) becomes equivalent to a=2.0.
Similarly, e=2.4, 2.6, 2.7 and 2.8 are equivalent to (4.2), respectively
for K—k,=2, 3, 4 and 5, provided that » is large enough. There-
fore, if the condition (4.2) is required for any k, in 0<k,<K, then «
should be greater than 2.0, 2.4, 2.6, 2.7 or 2.8, respectively for K=1
to 5. Such boundary values are worthy of consideration as a guide of
how to choose a, together with an upper bound in the next section.

5. An approximate minimax regret solution under a constraint

In this section, we try to find an approximate value of the mini-
max solution of a for aR(IE,,) by computer simulations. To save com-

putation time, we put a constraint k,—1<k.<K for each k, in 0<k,<
K. This is equivalent to restricting our attention to the parameters
of the form p(k,), in which g,- -, g, _, are large but g, is not. There
may be an objection that such constraint is artificial. If K=1 or 2,
the constraint is of no effect, otherwise it forces the solution to be
greater, for less chance of underfitting. But, as will be seen later, our
solution gives a good upper bound for the unconstraint minimax solu-
tion.

The following Theorem 5.1 holds true without any constraint, but
for simplicity we give the theorem under the constraint.

The maximum of 5R(IE,,) with respect to p,, is independent of k=
1 itself, but depends on K—Fk, and «. We can then define

max 0R(k)  for 1<k, <K
3R¥(a, K—ky)={ "o
3R(k.) for k,=0.

In previous sections, theorems are derived for the case when both K
and n are fixed, but here we analyze the behavior of 3R*(a, K—Fk,) is
analyzed for the case when K—k, is increased to infinity.

THEOREM 5.1. If n—K diverges to infinity as K tends to imfinity
together with m, then for any fixed ky in 0=k<K,

dR*(a, ©)  for a>1
lim sR*(a, K—ky)= ,
o 00 for a<1,
where dR*(a, o) 18 defined in (5.5). The minimax solution a in Theo-
rem 4.1 converges to a constant a*>1 as K tends to infinity.
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If n—K is fized but K tends to infiity together with m, then for any
fized 0k, <K and for any a,

(5.2) lim 6R*(a, K—Fky))=oo .
K—oo
The minimax solution a diverges to infinity as K tends to infinity.

Proor. It is enough to show (5.1) only for the case when k,=1.
Define

3R(k.|U)=E (L(k.)— L(ky)|U} .
Then
(5.3) 3R(k.|U)=E [{p:—(W,— )} Isg> | U1+ E [(M+aT) x> | U] .

We hereafter investigate the behavior of M or T for given U. Since
the random variables M and T are monotone increasing function of K,

random variables M. =1lim M and T.=lim T are a.s. well defined. The
K—oo K—oo

limit variables M, and 7. have proper distributions if and only if

6.4) lim 3 P (§,,,>0|U)/I< oo .

K—oo l=1

The condition (5.4) is equivalent to aU>1. This equivalence follows
from the fact that, as an increase of ! the probability

~ i+1
P(S,+1>0|U):P<% 3} W,z>aU|U>

exponentially goes to zero, or goes to 1/2, or goes to 1, whether aU=
1 or aU=1 or aU<]1, respectively.

We first consider the case when both n—K and K are large
enough. The condition (5.4) is then equivalent to a>1. Therefore, if

a>1, aR(IQ.,IU) converges a.s. to
IR.(k)=E [{t2— (Wi— i o cwor] + E (Mt o To) s ]

where W,=—(W?—a). We should note that the above convergence is
uniform in g,. It is for this reason that

max E {| gl —(W,— u)* low>00|U}
1

is a.s. bounded and is independent of K. Since 3R(k.|U)=E (M+aT |U)
when %k,=0, we have (5.1) by defining

max dR.(k.)  for k=1
(5.5) dR¥(a, 0)={ "
E(M.+aT.)  for k=0.
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Therefore,

max sR*(a, K—k)

0SkySK
remains unchanged for large enough K and for ¢>1. For a<1, the
conditional regret 0R(k.|U) as well as the regret 3R(k.) diverges to
infinity. Therefore, the minimax solution converges to a finite value
as n—K and K simultaneously tend to infinity.

Next consider the case when n—K is fixed. For any U such that
alU<1, aR(l:calU) a.s. diverges to infinity with K. The probability
P(aU<1) remains unchanged and nonzero, thus (5.2) follows. The
proof is complete if we show that the minimax solution diverges to
infinity with K. From Lemma 3.1, we have

3R(k,|U)<aU+E (M+eT|U)
for any p,. Therefore

K_kg
(5.6) 3R (@, K—ky)<a+E { 3V P(>am U|U)}

for 0<k,<K. Here, from the inequality used in Shibata [12],

1 {(aU—l)m—2}2]
12 m+2

P (yniz>amU|U)<exp [

for an amU>m+2, we have the boundedness of
K-k -

E [ 1P (an>am U0 ks

both in K and @. On the other hand,

K—ky E
E[ 2 P(ha>amU) ks

is bounded by (K—k,) P(eU<8). Combining these results, we see that
the right hand side of (5.6) is bounded, so that we may find a di-
vergent sequence ax such that

(.7) lim max 0R*(ex, K—ko)/K=0 .

K—o0 05kgSK

Whereas, for fixed a
(5.8) lim inf max 3R*(e, K—k))/JK=ZP(1>aU),
K—ow  0skySK

which follows from the inequality,

OR*a, K—k)2 3} E (P (s >amU|U)} ,
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since P (y%.:>amU|U) a.s. converges to P(1>aU|U) as.m tends to in-
finity. Therefore, the minimax solution diverges to infinity with K as
far as n—K is fixed.

Theorem 5.1 is well illustrated by the results of computer simula-

tions. For various g, 's, the values of aR(I},) were estimated by 1000
experiments based on generated normal random numbers for W,,: -, Wg.
Table 1 is a part of the results for the case when n is large enough.

In this table, the column “Max” stands for dR*(a, K—kj))=max 3R(k.)
“k,

and the column “Limit” stands for lim 8R(k,), which is thef regret

Hy

for the case of “Sharp fit” (see Shibaota [12]). We can see how fast
dR*(a, K—Fk,) converges to a constant as an increase of K—k,. If K—
ky=14, these values are satisfactorily convergent. The value for K—
k,=19 is an exception, which is always equal to the corresponding value
in “Limit”, since it allows no underfitting. Although our experiments
are limited, the minimax solution «=38.5 obtained in Table 1 does not
seem far from the limit a* in Theorem 5.1.

From Table 1, we can also obtain minimax solutions for other K’s.

Table 1. The maximum and the limit of the regret (SR(ﬁ,,) with respect
to ux, for the case when K=19 and n—K is large

K—lo a=1.0 a=2.0 a=3.0 a=3.5 a=4.0

Max Limit | Max Limit | Max Limit | Max Limit | Max Limit
0 0.26 0.00( 0.60 0.00 1.04 0.00 1.26 0.00 1.41 0.00
1 0.95 0.80| 1.09 0.58 1.30 0.40 1.44 0.30 1.63 0.26
2 1.66 2.33| 1.47 0.98 1.57 0.60 1.63 0.42 1.79 0.31
3 2.33 2.22| 1.77 1.30 1.61 0.75 1.62 0.48 1.76 0.34
4 3.01 2.90| 1.99 1.53 1.79 0.81 1.77 0.52 1.87 0.36
5 3.64 3.55| 2.18 1.74 1.70 0.84 1.69 0.55 1.73 0.38
6 4.22 4,16 | 2.25 1.81 1.75 0.85 1.73 0.55 1.88 0.38
7 4.83 4.77| 2.44 1.9 1.88% 0.85 1.84% 0.55 1.93% 0.38
8 5.48 5.40| 2.40 2.05 1.70 0.85 1.66 0.55 1.78 0.38
9 6.12 6.07 | 2.50 2.08 1.77 0.85 1.77 0.55 1.83 0.38
10 6.75 6.71| 2.48 2.12 1.81 0.89 1.73 0.55 1.80 0.38
11 7.60 7.58 | 2.67 2.22 1.84 0.89 1.83 0.55 1.86 0.38
12 8.27 8.22| 2.75% 2.28 1.85 0.89 1.76 0.55 1.87 0.38
13 8.80 8.77| 2.62 2.20 1.74 0.89 1.70 0.55 1.79 0.38
14 9.33 9.30 | 2.67 2.32 1.74 0.89 1.66 0.55 1.71 0.38
15 9.98 9.96 | 2.68 2.35 1.73 0.89 1.63 0.55 1.76 0.38
16 10.55 10.54 | 2.67 2.35 | 1.78 0.89 1.72 0.55 1.86 0.38
17 11.19 11.15| 2.68 2.35 1.75 0.89 1.70 0.55 1.84 0.38
18 11.76 11.72 | 2.74 2.35 1.75 0.89 1.69 0.55 1.80 0.38
19 12.23* 12.23 | 2.39 2.39 0.89 0.89 0.55 0.55 0.38 0.38

* denotes the maximum regret for each a.
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Since there is no underfitting when k,=0, taking the maximum of the
first K—1 values in the column “Max” and the K-th value in the
column “Limit” in Table 1, we can obtain

max dR*(a, K—k,) ,

05kgSK

Table 2. The maximum regret, max 5R(I::,,) when n—K is large

a K=1| K=2 | K=3 | K=4 | K=5 | K=6 | K=7 | K=8 | K=9
1.0 0.80 2.33 2.22 2.90 3.55 4.16 4.77 5.40 6.07
1.3 0.73 1.34 1.90 2.42 2.88 3.29 3.72 4.14 4.50
1.5 0.69 1.23 1.72 2.18 2.51 2.79 3.07 3.43 3.68
1.8 0.63 1.10 1.52 1.86 2.17 2.37 2.56 2.79 2.7
2.0 0.60% | 1.09% | 1.47% | 1.77 1.99 2.18 2.25 2.44 2.4
2.3 0.78 1.14 1.51 1.711 1.87 1.91 1.93 2.12 1.97
2.5 0.85 1.18 1.51 1.62 1.80 1.78 1.82 2.01 2.01
2.8 0.96 1.28 1.52 1.60% | 1.74% | 1.74% | 1.75% | 1.89 1.89
3.0 1.04 1.30 1.57 1.61 1.79 1.79 1.79 1.88 1.88
3.3 1.15 1.36 1.58 1.63 1.79 1.79 1.79 1.87 1.87
3.5 1.26 1.44 1.63 1.63 1.77 1.77 1.77 1.84% | 1.84%
3.8 1.40 1.54 1.73 1.73 1.81 1.81 1.81 1.90 1.90
4.0 1.41 1.63 1.79 1.79 1.87 1.87 1.88 1.93 1.93
5.0 1.94 2.04 2.11 2.11 2.25 2.25 2.25 2.29 2.29

* denotes the minimax value for each K.

In Table 2, the ¢ runs more densely than in Table 1, but the case K
>9 is omitted to save the space. The obtained approximate solution
is 2.0 for 1<K<3, 2.8 for 4<K<7, and 3.5 for K=8.

Table 3. The maximum regret, max 6R(k,) when n—K=2

a K=1 | K=5 | K=6 | K=9 | K=10 | K=11 | K=17 | K=18 | K=19

1.0 0.82 3.7 4.38 6.50 7.16 7.94 [11.65 |12.26 | 12.91
2.0 0.65% | 2.76% | 4.63 4.93 5.38 7.61 8.15 8.49 8.86
3.0 1.01 2.7 3.07 4.11 4.34 4.66 6.63 6.85 7.15
4.0 1.38 2.83 3.03% | 3.95% | 4.09% | 4.27 5.74 5.90 6.29
5.0 1.75 3.06 3.14 3.99 4.09% | 4.23*% | 5.41 5.50 5.8
6.0 2.12 3.24 3.31 4.02 4.14 4.24 5.27% | 5.38 5.59
7.0 2.47 3.55 3.62 4.19 4.28 4.34 5.28 5.36% | 5.54*
8.0 2.84 3.82 3.91 4.37 4.47 4.56 5.43 5.55 5.65

* denotes the minimax value for each K.

Table 3 is a part of the results for the case when n—K=2. This
is an extreme case, since n—K has to be greater than 1 in view of
degree of freedom. The obtained solution among a=1,---,8 is 2 for
1<K<5, 4 for 6<K=<10, 5 for K=11, 6 for 12<K<17, and 7 for 18
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=<K<19. As was proved in Theorem 3.1, the solution will diverge to
infinity with K.

Table 4. The maximum regret, max 5R(IE,,) when n—K=5

a K=1 | K=2 | K=3 | K=4 | K=5 | K=6 | K=10 | K=11 | K=19

1.0 0.81 1.56 2.28 2.93 3.57 4.18 6.87 3.99 | 12.65
2.0 0.61¥ | 1.16% | 1.60% | 2.06 2.41 2.74 3.86 3.99 6.30
3.0 1.01 1.43 1.71 2.01% | 2.27% | 2.42 3.05 3.13 4.25
4.0 1.43 1.75 1.90 2.09 2.33 2.33% | 2.76% | 2.81 3.41
5.0 1.85 2.10 2.21 2.29 2.50 2.41 2.77 2.79% | 3.07*
6.0 2.28 2.49 2.56 2.66 2.79 2.68 3.03 2.89 3.11

¥ denotes the minimax value for each K.

The case when n—K=5 is also simulated. A part of the results
are placed in Table 4. The solution is 2 for 1<K<38, 8 for 4<K<5,
4 for 6K<10 and 5 for 11<K<19. The solutions are smaller than
those in the case of n—K=2, but, still greater than those in case of
large enough n—K. It is intuitively clear that the minimax solution
becomes large as a decrease of n—K, to compensate such tendencies
of overfitting, since the estimation error of #(K) leads the FPE pro-
cedure to select an overfitted model. As a final remark, if the range

of selection is of the form k<k<Fk, the same solution is available only
by replacing K by k—k.

Acknowledgements

This work was partly done during the author’s stay in University
of Pittsburgh and in Mathematical Sciences Research Institute, Berkeley.
The author would like to express his sincere thanks to Professor P. R.
Krishnaiah for his encouragement and for making this study possible.
Suggestions by Dr. K. Subramanyam were helpful. Discussion with
Professor C. J. Stone was helpful for improving the original manusecript.

This research was partly supported by the National Science Found-
ation, Grant MCS-812-0790.

Appendix: Proof of Lemma 3.1

Without loss of generality we may assume px>0. It is easy to
show (9/0a)f,(a)=0 on 0=<a=<a*(p) for u*>1/2. Therefore, for positive-
ness of f,(a) it is enough to show

Sa)>0 for a>p>1.
This is because a*(¢)=p¢ as long as p>1. If p<a<2p
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fiay> | (w—ee)s= (-1

and if a=2u

fAa)> Sl (r—2hp(x)de=p’—1 .

We now prove (3.6). For p=a,

f@=\" (~a+2su)a— i

Sa{2(u—o)+a) || sp@— e

<20 (p—a)p(u—a)+a2
<a*{26(1)+1/2} <a?.

For p=<a,

fla)sp S s(z—pmdz<al.

Therefore the right hand side of (3.6) follows. Putting x=a, we have

Fu@)= S:" (@' —2)(@)de = at{O(2a) —1/2} —1/2 .

The left hand side of (3.6) then follows.
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