Ann. Inst. Statist. Math.
38 (1986), Part A, 445-450

¢-CORRECT DECISION FOR SELECTION AND ELIMINATION
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Summary

The selection of ¢ out of k¥ populations with parameters 6, (=1,
.-+, k) is said to result in an ¢-correct decision provided

¢ (minimum selected #)>maximum non-selected 6

where ¢(6) (>0) is an increasing function. For the cases of location
or scale parameters the minimum probability of ¢-correct decision over
the entire parameter space is shown to be no less than the minimum
probability of correct selection over a preference zone determined by
¢(0). For other types of parameters this result is shown to be true
under certain conditions linking the distribution function and the ¢
function.

1. Introduction

Consider %k independent random variables X; (¢=1,..-,k) from
populations z; with continuous distribution functions F'(-; §,) which are
stochastically increasing in the parameters 6,. We suppose that the
parameter space is given by

(1.1) 2={0=(,, ---,0,): 6,¢6)

where 6 is a subset of the real line.
The ordered 6, are given by

(1'2) ap(l)éapﬂ)é e éop(k—t)<0p(k—t+l)§ e éap(k)

where p(-) is an unknown parametric function, and the ordered X, are
given by

(1.3) Xeay<Xpo<:+  <Xpw

where R(-) is a random function.
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Bechhofer [2] considers the decision rule:
R: Select populations =; for all 2 ¢ G where

(1.4) G={R(k), R(k—1), ---, R(k—t+1)}.

Notice that R selects the populations with the ¢ largest values of X,
and eliminates those with the k—t smallest values. Since the distribu-
tions of the X, are stochastically increasing in the 6,, we expect, with
this decision rule, to select populations with large 6, values and to
eliminate those with small 4,.

Let the set of indices of populations with the ¢ largest 4, values
be denoted by

(1.5) r={o(k), p(k—1), - - -, p(k—t+1)}.
Correct selection, CS, is defined as the event
(1.6) CS={G=r}.

In order to put a lower bound on the probability of correct selec-
tion, P (CS), Barr and Rizvi [1] consider a preference zone, £2,, taken
to be a non-empty subset of £ and given by

1.7 2,={6: ¢p(6,)s6, Viey, jer}

where c¢ indicates the complementary set and ¢(-) is an increasing
function with

HO)>0 Voch.

It is usual to take ¢(0)=0-+4, when the 6, are location para-
meters, with 4, non-negative, and to take ¢(6)=60/4, when the 0, are
scale parameters, with 4, € (0, 1).

Feigin and Weissman [5] define ¢-correct selection, ¢ —CS, as

(1.8) ¢—CS= {I;Iiigl $(0:)>0 x40}
and show that
1.9) inf P {¢ —CS} =inf P (CS) .
feQ OED,/,
Let us define ¢-correct decision, ¢ —CD, as

(1.10) ¢—CD= {riniGn ¢-(0¢)>1;n%)c{ 6;}.

This is considered also by Feigin and Weissman who refer to it as
F-CS since it is a particular case of correct selection as studied by
Fabian [4]. We prefer the term ¢—CD since there is a joint state-
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ment about the eliminated as well as the selected populations.
Feigin and Weissman remark that it is an open question whether
or not

(1.11) inf P {¢ —CD} =inf P (CS) .
feq feay
In Section 2 it will be shown that (1.11) holds under certain con-

ditions on the distribution functions and the ¢ function. This gener-
alizes the work on location and scale parameters in Bofinger [3].

2. ¢-correct decision

Let
T={@J): i€y, jer° and ¢(0,)<0,}
I={i: (¢, ) e T}
J={j: (4, 5) €T}
and

D@O)=1{X,<X; VY(,4)eT|6}.

Before proving the main result we indicate the connection between
D(6) and ¢—CD with the following lemma :

LEMMA 2.1.
D)= ¢—CD
where the symbol “=>" is to be interpreted as “ implies”.
PRroOF.

¢—CD={ieG* and j € G for some (7, j) € T}
= {X,> X, for some (7, j) € T'}
= D) .

Hence the result follows.
THEOREM 2.1.
‘1’15 P{¢—CD}= 011510f¢ P (CS)
provided that there exists a 6* € 6 : either
2.1) (a) Vied, F(X;; ¢0,)<.F(Y; ¢(6%)

or
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(2.2) (b) Viel, F(X;;¢7(0))2.F(Y;$p7'(6%)

where Y has distribution function F(-;0%), ¢7'(-) is the function in-
verse to ¢(-) and =, or =,, indicates stochastic ordering.

ProoF. Since F(x; 6,) is increasing in x
D(0)={F(X,; 6)<F(Xi; 6,) V(,34)eT}
(2.3) S{F(X;; ¢(0))<F(Xi;6,) V(i 9)eT}
since F'(x; ) is decreasing in # and
6:29(6) VG eT.

If condition (a) holds we may replace the LHS of the inequality
in (2.8) by

F(Y;; ¢(6%))

where, for all j € J, the Y, are i.i.d. with distribution function F(-; 6*).
Also, since the F'(X;;0;) are uniformly distributed on (0,1) we
may replace the RHS of the inequality by

F(Z,; $(6))

where, for all 1 € I, the Z, are i.i.d. with distribution function F'(- ; ¢(6%)).
Hence

D) ={F(Y;; $(0F)<F(Z;; ¢(6%) VY, 7)eT})
«={Y,<Z, Viey, jery}.
Now

infP{Y,<Z;, Vieyr, jerlz= in‘fP (CS)
0€ay
which, using Lemma (2.1), shows that
inf P (¢ —CD)= inf P (CS).
fco aen¢
However,

inf P (¢ —CD)= oinf P (CS)
€0¢

0e9y,

which completes the theorem when condition (a) holds.
When condition (b) holds a similar argument is used, where the
expression (2.3) is replaced by

{F(X;; 0)<F(Xy; 67%0)) V(@ 5)eT}.

Remarks. Condition (a) is satisfied if there exists a 6* € ® such
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that, for X and Y random variables with distribution functions F'(-; 6)
and F(-; 60*) respectively,

(2.4) (@) F(X; p(0)=..F(Y; ¢(6%)) Vo<¢~(U)

where U =m§1x 4.

Similarly, condition (b) is satisfied if there exists a 6* € ® such that
(b") F(X;¢710)2.F(Y; ¢7'(6%)  V0>¢(L)
where L=min 4.
]

In Section 8 these conditions will be considered for location and
scale parameters.

3. Location and scale parameters

It will be shown that, for location and scale parameters, the con-
ditions of Theorem (2.1) are satisfied for any choice of the function ¢(-).

Location. Suppose
F(x; 0)=H(x—9) .
Then condition (a) of Theorem 2.1 may be written :
Vied  X,—¢(0)S.Y—¢(0%).

Since X;—0, and Y—6¢* have the same distribution we see that condi-
tion (a) becomes

(3.1) Vied  ¢(0,)—0,24(6%)—6*

and a possible value for * is that ¢, which gives the minimum value
of ¢(4,)—6,. Hence, although we may not be able to specify 6* (since
the 6, are unknown), we know that an appropriate 6* exists and there-
fore the theorem is true for any choice of the function ¢(-).

In the particular case where
$(0)=0+4,
we see that any value of 6* satisfies (3.1).
Scale. Suppose
F(x; 0)=H(x/9) .

Then condition (a) of Theorem 2.1 may be written
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Vied  Xi/¢(0,)=.Y/p(6%).
Since X,/0; and Y/6* have the same distribution the condition becomes
(3.2) Vied  9(6,)/6,29(6%)6*

and a possible value for 6* is that ¢, which gives the minimum value
of ¢(0,)/6;,. Hence condition (a) is satisfied for any choice of ¢(-).
In the particular case where

¢(0)=6/4,
any value of 6* satisfies (3.2).
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