A NOTE ON BOOTSTRAPPING THE VARIANCE OF SAMPLE QUANTILE

GUTTI JOGESH BABU

(Received Apr. 9, 1985; July 18, 1985)

Summary

Let $m_{n,p}$ denote the *p*-th quantile based on *n* observations and let λ_p denote the population quantile. In this paper consistency of the bootstrap estimate of variance of $\sqrt{n}(m_{n,p}-\lambda_p)$ is established.

1. Introduction

Let $\{X_n\}$ be i.i.d. random variables with distribution function F having unique median μ . Suppose F has a continuous derivative f at μ and $f(\mu)>0$. It is well known that under suitable conditions $M_n=\sqrt{n}(m_n-\mu)$ is asymptotically normal with mean zero and variance $(4f^2(\mu))^{-1}$, where m_n is a sample median. As $f(\mu)$ is not known in general, this result is of not much use in estimating μ . So one should look for a suitable estimate of the variance of M_n . Recently, Efron [7] introduced a very general resampling procedure called the bootstrap. Babu [1], Babu and Singh [3]-[5], Singh [10] and Bickel and Freedman [6] studied the asymptotic properties of this method. In this paper we use the bootstrap method to estimate the variance of M_n . In this connection, the theorem gives much more than we require.

2. Bootstrap estimation of variance

To describe bootstrap, let $\{X_1, X_2, \dots, X_n\}$ be i.i.d. random variables with distribution function F and let $T(X_1, \dots, X_n; F)$ be the specified statistic of interest, possibly depending on the unknown distribution F. Let F_n denote the empirical distribution function of X_1, \dots, X_n . The method consists of approximating the distribution of $T(X_1, \dots, X_n; F)$ under F by that of $T(Y_1, \dots, Y_n; F_n)$ under F_n , where Y_1, \dots, Y_n is a random sample from F_n .

Key words and phrases: Bootstrap, quantile, Borel-Cantelli lemma, Bahadur-Kiefer representation of quantiles.

Let G_n denote the empirical distribution function of Y_1, \dots, Y_n . For any distribution function G, 0 < u < 1, let $G^{-1}(u) = \inf \{x : G(x) \ge u\}$. Note that with this notation, $F_n^{-1}(u)$ is a u-th sample quantile. Let 0 and let <math>F be continuously differentiable in a neighbourhood of $F^{-1}(p)$. Further we assume that $f(F^{-1}(p)) > 0$, where f = F'. From the proof of Theorem 2 of Singh [10] (see also proposition 5.1 of Bickel and Freedman [6]), it follows that a.e., $B_{n,p} = \sqrt{n} (G_n^{-1}(p) - F_n^{-1}(p))$ is asymptotically normal with mean zero and variance $\sigma^2 = pq(f(F^{-1}(p)))^{-2}$, where q = 1 - p. So if for almost all samples, $\{B_{n,p}^2\}$ are uniformly integrable, then the bootstrap variance of $B_{n,p}$ converges a.e. to σ^2 . In particular, this holds if for some $\delta > 2$, the δ -th moment of $|B_{n,p}|$ are uniformly bounded a.e. The following theorem is useful in this connection.

Theorem. Let E_{*} denote the expectation under the bootstrap distribution. We have

- (1) If $E(\log(1+|X_1|))<\infty$, then for all k>0, $E_*|B_{n,n}|^k\ll 1$ a.e.
- (2) If $E\{[\log (1+|X_1|)]/\log \log (3+|X_1|)\} = \infty$, then for every k>0 $\limsup E_*|B_{n,p}|^k = \infty$ a.e.
- (3) If $E(X_1^2) < \infty$, then for every real t, $E_*(e^{t|B_{n,p}|}) \ll 1$ a.e.
- (4) If $E(X_1/\log (1+|X_1|))^2 = \infty$, then for all real t, $\limsup_{n\to\infty} E_*(e^{t|B_{n,p}|}) = \infty$ a.e.

Often the notation " \ll " is used instead of the standard $O(\cdot)$. Ghosh, Parr, Singh and Babu [8] proved that if $E|X_1|^a < \infty$ for some a>0, then for some $\delta>2$, $E_*|B_{a,0,5}|^s \ll 1$ a.e.

To prove the Theorem, we need the following lemmas.

LEMMA 1. Let $\{Z_i\}$ be i.i.d. random variables with $Z_i \ge 0$ and $E(Z_1) < \infty$. Then there exists a sequence $0 \le a_n \to 0$ such that $\max_{i \le n} Z_i \le na_n$ for all large n, a.e.

PROOF. Let $10 < s_1 < s_2 < \cdots$ be continuity points of the distribution G of Z_i such that $2^i < s_i$ and $\int_{s_i}^{\infty} x dG(x) < E(Z_1) 4^{-i}$. Define h(x) = 1 for $0 < x \le s_1$ and $h(x) = 2^j$ for $s_j < x \le s_{j+1}$, $j = 1, 2, \cdots$. Clearly $h(x) \uparrow \infty$, $h(x) \le x$ for $x \ge 1$ and $E(Z_1 h(Z_1)) < \infty$. So

$$\begin{aligned} [Z_1 > n/h(\sqrt{n})] = & [(Z_1 > n/h(\sqrt{n})) \cap (Z_1 > \sqrt{n})] \\ \subset & [(Z_1 > n/h(\sqrt{n})) \cap (h(Z_1) > h(\sqrt{n}))] \\ \subset & (Z_1 h(Z_1) \ge n) .\end{aligned}$$

As a consequence.

$$\sum_{n=s_1}^{\infty} P(Z_n \geq n/h(\sqrt{n})) \leq \sum_{1}^{\infty} P(Z_1 h(Z_1) \geq n) \leq 1 + E(Z_1 h(Z_1)) < \infty.$$

Hence by Borel-Cantelli lemma a.e., $Z_n \le n/h(\sqrt{n})$ for all large n. If we put $a_n = 1$ for $1 \le n \le s_1$ and

$$a_n = \max\{(2/h(\sqrt{i})): \log n \leq i \leq n\}$$

for $n > s_1$, then for $n \ge 10$, $a_n \ge 2/\sqrt{\log n}$ and

$$\max_{i \leq n} (i/h(\sqrt{i})) \leq (n/\sqrt{\log n}) + \max\{(i/h(\sqrt{i})): \sqrt{n} \leq i \leq n\}$$
$$\leq (n/\sqrt{\log n}) + \frac{1}{2} n a_n \leq n a_n.$$

So $\max_{i \le n} Z_i \le na_n$ for all large n, a.e.

LEMMA 2. Let $0 < \delta < 1$. Let $\{Z_{i,\delta}\}$ be i.i.d. random variables with $P(Z_{1,\delta}=1)=\delta=1-P(Z_{1,\delta}=0)$. Let $S_{n,\delta}=\sum\limits_{i=1}^n Z_{i,\delta}$. Then

$$P(S_{n,\delta} \geq 4 \max \{\sqrt{n}, n\delta\}) \ll n^{-3}$$
.

PROOF. For any a, b>0, we have by Markov's inequality that

$$P(S_{n,\delta} \ge 4b) \le e^{-4ab} (\delta e^a + (1-\delta))^n \le \exp(-4ab + n\delta(e^a - 1)).$$

The result follows now by putting $b=\max\{\sqrt{n}, n\delta\}$ and $a=(\log n)/b$ in the above equation.

PROOF OF THE THEOREM. Let $T_1 = F_n^{-1}(0) = \min_{t \le n} X_t$ and $T_2 = F_n^{-1}(1) = \max_{t \le n} X_t$. First, we prove (2). By using Borel-Cantelli lemma, we get for any $\delta > 0$ that $|X_n| \ge \exp(\delta n \log n)$ infinitely often a.e. Consequently, $T = \max\{|T_1|, |T_2|\} = \max_{t \le n} |X_t| \ge n^{\delta n}$ infinitely often a.e. So for any k > 0, by taking $\delta = 2/k$, we obtain

$$T^k P_*(G_n^{-1}(p) \in \{T_1, T_2\}) \ge n^{\delta kn} n^{-n} \ge n^n$$

infinitely often a.e. This proves (2). A similar proof gives (4).

To prove (1) and (3), let $\{U_i\}$ be i.i.d. U[0, 1] random variables. Let V_n denote the empirical distribution function of $\{U_1, \dots, U_n\}$. Without loss of generality we can take $X_i = F^{-1}(U_i)$. As f is continuous and positive in a neighbourhood of $F^{-1}(p)$ and since

(5)
$$\sup_{0 \le t \le 1} \sqrt{n} |V_n^{-1}(t) - t| (\log \log n)^{-1/2} \ll 1 \text{ a.e. ,}$$

there exists a $d \in (0, \min \{p, q\})$ such that, a.e. we have

$$|F_n^{-1}(t+p) - F_n^{-1}(p)| = |F^{-1}(V_n^{-1}(t+p)) - F^{-1}(V_n^{-1}(p))| \\ \ll |V_n^{-1}(t+p) - V_n^{-1}(p)|$$

uniformly for $|t| \le d$. By Bahadur-Kiefer representation of quantiles

(see Kiefer [9]), we have uniformly for |t| < d,

(7) the l.h.s. of
$$(6) \ll |V_n(t+p) - V_n(p) - 2t| + n^{-8/4} \log n$$

 $\ll \max\{|t|, n^{-1/2}\}$ a.e.

The last inequality in (7) follows from Lemma 2 and the Borel-Cantelli lemma.

Let r=np+1 or [np] depending on whether np is an integer or not, where [x] denotes the integral part of x. Since for any $v \in (0, 1)$,

$$\sum_{j=r}^{n} {n \choose j} v^{j} (1-v)^{n-j} = n {n-1 \choose r-1} \int_{0}^{v} u^{r-1} (1-u)^{n-r} du ,$$

we have for $1 \le i \le n$,

$$P_*(G_n^{-1}(p) = F_n^{-1}(i/n)) = n \binom{n-1}{r-1} \int_{(i-1)/n}^{i/n} u^{r-1}(1-u)^{n-r} du.$$

By Stirling's formula $n \binom{n-1}{r-1} \ll \sqrt{n} p^{1-r} q^{r-n}$. So for any D > 1, $n^{-1/2} \le \varepsilon_n \to 0$, by (7) a.e. there exists an A > 1 such that

$$(8) \qquad \sum_{|p-i/n| \leq \epsilon_n} P_*(G_n^{-1}(p) = F_n^{-1}(i/n)) \exp\left(D\sqrt{n} \left| F_n^{-1}\left(\frac{i}{n}\right) - F_n^{-1}(p)\right|\right)$$

$$\ll 1 + \sqrt{n} p^{1-r}q^{r-n} \sum_{|p-i/n| \leq \epsilon_n} \exp\left(A\sqrt{n} \left|(i/n) - p\right|\right)$$

$$\cdot \int_{(i-1)/n}^{i/n} u^{r-1}(1-u)^{n-r}du$$

$$\ll 1 + \sqrt{n} \int_{-2\epsilon_n}^{2\epsilon_n} \exp\left(A\sqrt{n} \left|v\right|\right) \left(1 + \frac{v}{p}\right)^{r-1} \left(1 - \frac{v}{q}\right)^{n-r}dv$$

$$\ll 1 + \sqrt{n} \int_0^{2\epsilon_n} \left[\exp\left(A\sqrt{n} \left|v\right|\right) \left(1 + \frac{v}{p}\right)^{r-1} \left(1 - \frac{v}{q}\right)^{n-r}dv$$

$$\ll 1 + \int_0^{2\epsilon_n} \left[\exp\left(A\sqrt{n} \left|v\right| - \frac{nv^2}{2pq} + O(nv^2\varepsilon_n)\right)\right] dv$$

$$\ll 1 + \int_0^{2\sqrt{n}\epsilon_n} \left[\exp\left(Av - \frac{v^2}{2pq} + O(v^2\varepsilon_n)\right)\right] dv \ll 1.$$

Note that the function $u^{r-1}(1-u)^{n-r}$, 0 < u < 1 is increasing in (0, (r-1)/(n-1)) and decreasing in ((r-1)/(n-1), 1). Since $1+x \le \exp(x-x^2/4)$ for $|x| \le 1/2$, and since $pq \le 1/4$, we have, a.e.

$$\begin{array}{ll} (\ 9\) & \sum\limits_{|p-i/n|>\epsilon_n} P_*(G_n^{-1}(p)\!=\!F_n^{-1}(i/n)) \\ & \leqq n \binom{n-1}{r-1} \int_{(|u-p| \ge \epsilon_n - 1/n)} u^{r-1} (1\!-\!u)^{n-r} I_{(0,1)}(u) du \\ & \ll \sqrt{n} \left[(1\!+\!(\varepsilon_n\!-\!n^{-1})/p)^{r-1} (1\!-\!(\varepsilon_n\!-\!n^{-1})/q)^{n-r} \right. \\ & \left. + (1\!+\!(\varepsilon_n\!-\!n^{-1})/q)^{n-r} (1\!-\!(\varepsilon_n\!-\!n^{-1})/p)^{r-1} \right] \\ & \ll \sqrt{n} \, \exp\left(-n(4pq)^{-1} \varepsilon_n^2\right) \ll \sqrt{n} \, \exp\left(-n\varepsilon_n^2\right) \, . \end{array}$$

If $E(\log (1+|X_1|))<\infty$, then by Lemma 1, there exists a sequence $0 \le a_n \to 0$ such that $T \ll e^{na_n}$ for all large n a.e. So if we take $\varepsilon_n^2 = \max \{2a_n, n^{-1/4}\}$ in (8) and (9) we get

$$E_*|B_n, p|^k \ll 1 + T^k n^{(k+1)/2} \exp(-n\varepsilon_n^2)$$

 $\ll 1 + n^{(k+1)/2} (\exp(na_n - n\varepsilon_n^2)) \ll 1$ a.e.

This proves (1). If $E(X_1^2) < \infty$, then by Lemma 1, there exists a sequence $0 \le a_n \to 0$ such that $T \le \sqrt{na_n}$ for all large n a.e. So for any t > 0, if we take $\varepsilon_n^2 = \max\{2t\sqrt{a_n}, n^{-1/4}\}$ in (8) and (9) we get (3).

This completes the proof of the Theorem.

Remark. The condition that F is differentiable in a neighbourhood of $F^{-1}(p)$ can be relaxed. The only place in the proof where it is used is in (6). Without this assumption a weaker version of the theorem can be obtained using Theorem 5 of Babu and Singh [2].

INDIAN STATISTICAL INSTITUTE

REFERENCES

- [1] Babu, G. J. (1984). Bootstrapping statistics with linear combinations of chi-squares as weak limit, Sankhya, Series A, 46, 85-93.
- [2] Babu, G. J. and Singh, K. (1978). On deviations between empirical and quantile processes for mixing random variables, J. Multivar. Anal., 8, 532-549.
- [3] Babu, G. J. and Singh, K. (1983). Inference on means using bootstrap, Ann. Statist., 11, 999-1003.
- [4] Babu, G. J. and Singh, K. (1984). Asymptotic representations related to jackknifing and bootstrapping L-statistics, Sankhya, Series A, 46, 195-206.
- [5] Babu, G. J. and Singh, K. (1984). On one term Edgeworth correction by Efron's bootstrap, Sankhya, Series A, 46, 219-232.
- [6] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap, Ann. Statist., 9, 1196-1217.
- [7] Efron, B. (1979). Bootstrap methods: Another look at the Jackknife, Ann. Statist., 7, 1-26.
- [8] Ghosh, M., Parr, W. C., Singh, K. and Babu, G. J. (1984). A note on bootstrapping the sample median, Ann. Statist., 12, 1130-1135.
- [9] Kiefer, J. (1967). On Bahadur's representation of sample quantiles, Ann. Math. Statist., 38, 1323-1342.
- [10] Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap, Ann. Statist., 9, 1187-1195.