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Summary

Let m, , denote the p-th quantile based on n observations and let
4, denote the population quantile. In this paper consistency of the
bootstrap estimate of variance of 4% (m,,—2,) is established.

1. Introduction

Let {X,} be i.i.d. random variables with distribution function F
having unique median x. Suppose F has a continuous derivative f at
¢ and f(p)>0. It is well known that under suitable conditions M,=
vV n(m,—p) is asymptotically normal with mean zero and variance (4f?
()", where m, is a sample median. As f() is not known in general,
this result is of not much use in estimating x. So one should look
for a suitable estimate of the variance of M,. Recently, Efron [7] in-
troduced a very general resampling procedure called the bootstrap.
Babu [1], Babu and Singh [3]-[5], Singh [10] and Bickel and Freedman
[6] studied the asymptotic properties of this method. In this paper we
use the bootstrap method to estimate the variance of M,. In this con-
nection, the theorem gives much more than we require.

2. Bootstrap estimation of variance

To describe bootstrap, let {X], X;,- -, X,} be i.i.d. random variables
with distribution function F' and let T'(X,,---, X,; F)) be the specified
statistic of interest, possibly depending on the unknown distribution F.
Let F, denote the empirical distribution function of X,---, X,. The
method consists of approximating the distribution of T'(X,---, X,; F)
under F' by that of 7'(Y,---,Y,; F,) under F,, where Y,,---,Y, is a
random sample from F,.
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Let G, denote the empirical distribution funetion of Y;,---,Y,. For
any distribution function G, 0<u<1, let G™'(u)=inf {x: G(x)=u}. Note
that with this notation, F;!(u) is a u-th sample quantile. Let 0<p<1
and let F' be continuously differentiable in a neighbourhood of F-(p).
Further we assume that f(F~(p))>0, where f=F’. From the proof
of Theorem 2 of Singh [10] (see also proposition 5.1 of Bickel and Freed-
man [6]), it follows that a.e., B, ,=+/%(G;'(p)—F,(p)) is asymptotically
normal with mean zero and variance ¢*=pq(f(F~(p))~2, where ¢=1—np.
So if for almost all samples, {B,} are uniformly integrable, then the
bootstrap variance of B, , converges a.e. to ¢°. In particular, this holds
if for some 3>2, the J-th moment of |B,,| are uniformly bounded a.e.
The following theorem is useful in this connection.

THEOREM. Let E, denote the expectation under the bootstrap distri-
bution. We have

(1) If E(log A+|X |))<oo, then for all >0, E4|B,,[*<1 a.e.
(2) If E{[log 1+]|X))]/log log (3+|X;])} =0, then for every k>0
lim sup E|B, =00 a.e.

(3) If E(X})<oo, then for every real t, Ey(e'®»?)K1 a.e.
(4) If E(Xiflog (1+]|X,))))=0c0, then for all real t, lim sup E,(¢"?ns')=
o a.e.
Often the notation “«” is used instead of the standard O(-). Ghosh,
Parr, Singh and Babu [8] proved that if E|X*<c for some a>0, then

for some 4>2, E.|B,.;'«1 a.e.
To prove the Theorem, we need the following lemmas.

LEMMA 1. Let {Z]} be i.i.d. random variables with Z,=0 and E(Z))
<oo. Then there exists a sequence 0<a,—0 such that max Z,<na, for

all large n, a.e. =
PROOF. Let 10<s,<s,<--- be continuity points of the distribution
G of Z; such that 2'<s; and r 2dG(x)< E(Z)4~¢. Define h(zx)=1 for
5

0<x=<s, and h(x)=2’ for s,<x<s;y, j=1,2,--+. Clearly i(z) | o, h(x)
<« for x=1 and E(Zk(Z))<cc. So

[Z:>n/M(yn)]=[(Z>n/My1)) N (Z> v )]
Cl(Z>n/h(v 7)) N ((Z) > k(v )]
C(ZMZ)zm) .

As a consequence,

5} PZyznlh(yB)S S PUEMNZ) 2m <1+ EGHZ) <oo .
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Hence by Borel-Cantelli lemma a.e., Z,<n/h(yn) for all large n. If
we put a,=1 for 1<n<s, and

a,=max {(2/h+¥ 7 )): log n=i<n}
for n>s,, then for n=10, a,=2/vlog n and
max (/M7 )= (n/viog n)+max {((/k(¥ 7 )): Vn SiZn)
<(n/VIog 1)+ na, <na, .

So max Z,<na, for all large n, a.e.
isn

LEMMA 2. Let 0<d<1. Let {Z,,} be i.1.d. random variables with
P(Z,,=1)=0=1—P(Z,,=0). Let S,.,,:iizi,,. Then
=1

P(S,,=z4 max {yn,nd})Kn*.
Proor. For any a,b>0, we have by Markov’s inequality that
P(S, ,;=4b)<e '?*(3¢*+(1—3))"<exp (—4ab+nd(e*—1)) .

The result follows now by putting b=max {4/, n3} and a=(log n)/b
in the above equation.
PROOF OF THE THEOREM. Let T,=F;!0)=min X; and T,=F,"'(1)
isn
=max X;. First, we prove (2). By using Borel-Cantelli lemma, we get
isn
for any 4>0 that | X,|=exp (dn log ) infinitely often a.e. Consequentlly,
T=max {|T}], |T2|}=nt1ax|Xi|gn‘" infinitely often a.e. So for any k>0,
=n

by taking 8=2/k, we obtain
T*Py(G:'(p) € {T}, T} =n™*"n"=n"

infinitely often a.e. This proves (2). A similar proof gives (4).

To prove (1) and (8), let {U;} be i.i.d. U[0, 1] random variables.
Let V, denote the empirical distribution function of {U,,---, U,}. With-
out loss of generality we can take X,=F"(U,). As f is continuous
and positive in a neighbourhood of F~'(p) and since

(5) sup V|V, (t)—t|(log log n)*«1 a.e.,
<t<1
there exists a d ¢ (0, min {p, q}) such that, a.e. we have

(6)  |F7'¢+pn)—Fo@)|=F (V' t+p)—F (Vi (0))]
L Vi't+p)—-Vi'o)

uniformly for |t|<d. By Bahadur-Kiefer representation of quantiles
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(see Kiefer [9]), we have uniformly for |t|<d,

(7) the Lh.s. of (6)«|V,(t+p)—V.(p)—2t|+n**logn

«max {|t|, n™V%} a.e.
The last inequality in (7) follows from Lemma 2 and the Borel-Cantelli
lemma.

Let r=np+1 or [np] depending on whether np is an integer or
not, where [x] denotes the integral part of x. Since for any v¢€ (0, 1),

jé‘,r (?’)v’(l—v)""zn(’::%) S: w(l—u)"du ,

we have for 1=<i<n,

PuG@=Frim)=n(}_1) | wi—wrdu.

r—1) )a-v/m

By Stirling’s formula n(:’::%)««%pl—rqr—n. So for any D>1, n—l/zé
e,—0, by (7) a.e. there exists an A>1 such that

(8) 3 PuG®=F: i) exp Dy |Fri(L)-Friw))

Ip-i/nlse,

|p—i/nlse

L1+ymp7g™ 3 exp (AJWI(i/n)—pD

i/n
. S w1 —u)yrdu

G-D/n

Kl+v7 S exp (AYT |v|)<1+-;’;)"1<1—%>""dv

<Ly [ [exp (VT 0— 22 Omie,) v
WTey, ’Uz
<<1+SO [exp <A1)—%+O(vzen)>i|dv<<1 .

Note that the function w"'(1—w)*", 0<u<1 is increasing in (0, (r—1)/
(n—1)) and decreasing in ((r—1)/(n—1),1). Since 1+x=<exp (z—z'/4)
for |z|<1/2, and since pg<1/4, we have, a.e.

(9) >3 Py(Gr'(p)=F,'(i[n))

Ip=i/n|>e,

=a(}27)] WL =)L ()i
r—1) )u-nizeg-1m

VR [A+ (e —nN)/p) (L= (e.—n)/@)""
+@A+ (e, —n) g "A—(en—n7)/p) ]
L4/ exp (—n(4pg)'e;) K/ M exp (—ney) .
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If E(log (1+|X;[))< oo, then by Lemma 1, there exists a sequence 0=
a,—0 such that T«e™» for all large n a.e. So if we take ¢2=max {2a,,
n~} in (8) and (9) we get

E,|B,, plt«1+ T*n**V2 exp (—ne;)
L14+n*+2exp (na,—nel)) K1 a.e.

This proves (1). If E(X?)<oo, then by Lemma 1, there exists a se-
quence 0<a,—0 such that T'<mna, for all large » a.e. So for any
t>0, if we take e2=max {2ts/ a,, n "} in (8) and (9) we get (3).

This completes the proof of the Theorem.

Remark. The condition that F' is differentiable in a neighbourhood
of F-!(p) can be relaxed. The only place in the proof where it is used
is in (6). Without this assumption a weaker version of the theorem
can be obtained using Theorem 5 of Babu and Singh [2].
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