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Summary

Estimation-preceded-by-testing is studied in the context of estimat-
ing the mean vector of a multivariate normal distribution under squared
error loss together with a complexity cost. It is shown that although
the preliminary test estimator is admissible for the univariate problem
(cf Meeden and Arnold (1979), J. Amer. Statist. Assoc., 74, 872-874),
for dimension p=3, the estimator is inadmissible. A new preliminary
test estimator is obtained, which depends on the cost for each compo-
nent and dominates the usual preliminary test estimator.

1. Introduction

A preliminary test estimation procedure is described as follows.
After a preliminary test of a certain null hypothesis, estimation is made
under the alternative hypothesis if the null hypothesis is rejected, and
is made under the null hypothesis otherwise.

Let Xi,---, X, be iid N0, ¢’L,). For estimating 8=(6,,---, 8,) by
a=(a,- -+, a,), suppose the loss incurred is given by

wy L0, )=2} (@~ 00+ 3] Gioger

where ¢, -+, ¢, are known positive real numbers, and I is the usual
indicator function. The constant ¢, is described as the “complexity
cost” associated with the i-th component (cf Faden and Rausser [4],
Meeden and Arnold [5]). First consider the case when ¢* is known.
The generalized Bayes estimator of # under the improper prior with
pdf g(@)=1 for 6 € R?, the p-dimensional Euclidean space, is then ob-
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3 . . . . p .
tained by minimizing > h,(a,) with respect to ay,---, a,, where
i=1

(1.2) hi(at):S (0:—a.)"(2ro") ™" exp [—(20") (0, — Tui)'1d0; + Cilia 07 -

o
-

In the above Z,; is the i-th component of i:,,zn“‘éxi. Noting that

hi(0)=22+d*n and hya,)=(a,—%.) +0*n+ci if ai;ﬁb, it follows that
hi(a;) is minimized at 0 if |Z,|<c, and at %,; if |Z.|>c;. Thus, the gen-
eralized Bayes estimator of @ is given by 3(X,)=(0.(X.),+, 8,(X.0)
where

1.3) ai(Xni)ziniI[[}?nibci] ,  1=1,---,p.

Such an estimator is easily identified as a preliminary test estimator.
For example, when the preliminary test accepts H,: §,=0, we estimate
8, to be 0, otherwise we estimate 6, by z,. If the test is performed
at the 100¢,% significance level, then we choose c¢,=on"'%z,,, Where
z, denotes the upper 10022 point of the N(0, 1) distribution.

For p=1, Meeden and Arnold [5] proved the admissibility of the
preliminary test estimator given in (1.3) under a loss more general
than (1.1) in that the squared error component (a—6)* is replaced by
a more general W(la—@|), where W(u) is nondecreasing in » with W(0)
=0. Indeed for p=1, 2, the admissibility of the preliminary test esti-
mator given in (1.3) under the loss (1.1) can now be proved more easily
by a direct appeal to Theorem 3.1 and Corollary 4.1 of Brown and
Hwang [3] noting that the estimator is generalized Bayes with respect
to the uniform prior on R*. :

The above results are of interest because it is the introduction of
the complexity cost in addition to the squared error loss that makes
the preliminary test estimator admissible. Under the regular squared
error loss which is smooth, the preliminary test estimator, due to its
lack of smoothness, cannot be generalized Bayes with respect to any
smooth prior, and as such, is inadmissible for all p. The introduction
of the complexity cost makes the loss non-smooth, and makes the pre-
liminary test estimator generalized Bayes with respect to some prior,
and hence, potentially admissible.

Note that for unknown ¢% the preliminary test estimator given in

(1.3) should be modified as (X, S2)=(8,(X,, S2),- -+, 3,(X,, S¥) with
(1.4) 3.X, Sy=X. Lz us,5e0 =10+, D,

where S,2,=(('rc—1)p-i—2)“illXi—)?,,ll2 is the best scale invariant esti-
i=1

mator of o’
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It is thus of some interest to know whether the Stein effect per-
sists in this case, i.e. whether or not the preliminary test estimators
given in (1.3) or (1.4) are admissible in three or higher dimensions.
In Section 2 of this paper, we produce explicit estimators dominating
the preliminary test estimators given in (1.3) and (1.4). For known o?
as an important special case of the class of estimators to be proposed

in Section 2, we get the James-Stein type estimator #(X,)=(3%(X,),
+++, 0%X,)), where

A(N(X,)—2)*\ 5 .
—_('n_(”}-);“-z—')_'>xni[[lfnil>ci] ’ /L:l: e, D,
N(X,)=%{i: | X..|>c]}, and a*=max (a, 0). For unknown ¢*, we get the
estimator 3%(X,, S?) with its i-th component given by

SANX,)—2)* \ 5 .
—_ ( n(”j.)llz ) >Xnilfl.f'nil/sn>cé] ’ 'L:l’ e, D,

Estimators dominating the preliminary test estimators under squar-
ed error loss have been obtained by Sclove et al. [7] (see also Bock et
al. [2] in the more general regression model). Specialized to our situa-
tion, such estimators are given as follows. For known 4%, let

_ (p—2)¢*
n || X

5 X)=(1

(16) 3K S=(1

~ = + .
(1.7 Bi(X,.)=<1 >XniI[”j’n”>c]r t=1,--+,p.

In the above, the choice of ¢ depends on the level of significance of
the preliminary chisquare test for H,: #=0 against H,: 6§ #0. Then

under the squared error loss, for p=3, the estimator 3'(X,)=(3(X,),
.-+, 34X,)) dominates the preliminary test estimator 3'(X,)=(3%(X,),
.+, 04 X,)) with

1.8) WX)=X.Lix>a, 1=l p.

For unknown ¢% the estimators &' and &' are replaced respectively by
& and & with

1.9) X, S)=X.Lix.iis.>cl, =1+, p;

-, = -2 Sfl + — .
(1.10) ag(xm S:): (\1—%”—2—) XMI[HX’,;H/S.,>60] , 1=1,---, .

The choice of ¢, depends on the level of significance of the preliminary
F-test for testing H,: 8=0 against H: 8+0.

With the introduction of the complexity cost as given (1.1), the
estimators given in (1.7) and (1.8) (for known ¢?) and (1.9) and (1.10)
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(for unknown ¢*) do not seem appropriate. Noting that

| X,|!= sup (a’X.),

a: |lall=1
according to (1.7) and (1.8), we do not estimate 0, to be zero even
if | X, is sufficiently small, but || X,|? is significantly large. This is
because in order for || X,||* to be significantly small, all (a’X,)* with |||

=1 should be significantly small, and not just X2%. This can lead to
the complexity ¢! in addition to the squared error loss for estimating
the i-th coordinate, when indeed this should not be the case.

Recently Nagata [6] considered admissibility and inadmissibility of
preliminary test estimators using Akaike’s Information Criterion. He
showed that the preliminary test estimator was admissible for p=1
and inadmissible for p=38 under a loss function based on the Kullback-
Leibler information measure. Our loss function is different from the
one given in Nagata as is our incorporation of the complexity cost in
the loss.

2. Inadmissibility results

In this section, we first consider the case when ¢ is known. We
propose a class of estimators including the ones given in (1.5) as spe-
cial case, which dominate 3(X,) given in (1.3). The level of generality
of the proposed estimators is comparable to that of Baranchik [1] and
Strawderman [9]. Like most other recent results of similar nature,
our proof involves the integration by parts technique of Stein [8].

The first main result of this section is given as follows.

THEOREM 2.1. Let M,=||X,|*, and suppose = is a real-valued func-
tion satisfying
(i) 0<r(m)<2
(ii) t(m) is differentiable and increasing in m. Then the estimator
atﬂ(Xn):(atB(jn)’ ] ag(jn)) with
_ UZ(N(Xn)_2)+T(Mn)>
nM,

1=1,..., p, dominates the estimator 8 given in (1.3). A lower bound of
the risk improvement is given by

(2.2) (o) E [{(N(X,) —2) Ve (M) 2— (M) M,] -

XMI[IE’MIN"] [}

@.1) 2 X)=(1

ProoF. First write the risk difference

(2.3) R(@,3%)—R(@,3)
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S0 o o
= 924" é E [ (N(X.) 1lI2) (M) X,.;(Xm—ot)fuf,,,»ctl]

+B[2 ) —DPVOE) S Ridr,oea

Note that second term in the rhs of (2.3)

2.4) g;—‘,E[{(N(X,,)—z)ﬂ*rz(M,,)/M,.].
Next
2.5) E [ (N(X,) ;f)*’(M") X Zi— 00z, 15

n

e [ WD) 3 ()T

anv X X ni+ls * an] ’

Now using integration by parts,

@9 S ¢ ) ’l'nzn)+r(mn) z (wnt—ﬂt) «;/E—i exp( 25° >z @ni— t)z>d?v_,.¢
= <N<1+% I[lfnjl>cj]) —2>+ S: z'g;f'bnn) % (Fri—02) ~/x/;

. exp (—%(Eﬂ—a,y)dzﬂ

+
= (N (143 Finoen) —2)
rt

Y4
r(c:+z: zz.,)
2 =1
il ¢ ~2n . exp( oot (0 0¢)2)
j#f
ig” (r(’m,,)_>Vn <_n 7 _f z)d'
+ n Je, axm m, Lns ,—2750'2 exp 20_2 (xni i) Tt

=(e*/n) S (NE)—2) 2 ( wm) 5, g,,z

+ €eXp (—g (@i — 0t)z)d5n¢ .

A similar lower bound exists for
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S:: (N(i,.)—2)+(r(m,,)/m,,)i,,,.(?c,,i—oi)‘/%2_ exp (_ En.;? (Fom 0i)2> iz,

and one gets

@7 E [ (N(X")IWZ)”(M") X,.,-(X,.i—ai)ﬂlx,,i,gci]}

n

>(o'/n) E [(1\7(1?;)—2)+ {a—j’_(—(i%—)l?)} I[|ini1>ci1] -

ni

But, using (ii),

@8 L (<UL g )WL), <OL) o3y <L) k)

0X. \ M, M, M,
2=l ) 5%z

From (2.3), (2.4), (2.7) and (2.8), one gets after some algebraic simpli-
fications that
(2.9) R(6, 8*)—R(8, 3)< —(¢*/n’) E [{N(X,—2)*}’

* (T(Mn)/Mn) 2— T(Mn))] =0.

This completes the proof of the first part of the theorem. The asser-
tion (2.2) follows by examining the penultimate line of (2.9).

Remark 2.1. For known ¢%, if instead of testing H,: #=0 against
H,: 6+0, one tests H,: §=2 against H,: 8+ 2 where 2 is some speci-
fied constant, then the usual preliminary test estimator should be modi-

fied as (X,)=(d(X,),- -+, 84 X,)), with
af(jn) =4+ (Xm'._ zi)I[IX’M—Aibci] ’ 1=1,---,p.

Now a class of estimators (similar to the one given in (2.1)) dominat-
ing & is given by 38XX,) with

— 2N Y ) 9\+ ) —
(X = Ao (1— CREE =2V )%, — 282, 1150

i=11' Dy where M(Xn)zﬁ{’l‘: lEni—2i|>ci}1 and Mrleljn_lnz'

Next we examine the case when ¢ is unknown. In this case ¢* is
replaced by S? in the improved estimator, and also M, in Theorem 2.1
needs to be changed. More precisely, we have the following theorem.

THEOREM 2.2. Let F,=|X,|/S.. Let r be a real-valued function
satisfying (1) and (ii) of Theorem 2.1. Then the estimator
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*(X,, S)=(32(X,, 82, - -, 83(X,, S2))

with

- - v 2} __9\+ —
(2.10) 33(X,, S1)= <1_ (N(X,, S;;)F 2)*z(F,) >XntItli’,,il/sn>c¢] ,

i=1,--, p, when N(X,, S})=#{i: |Z,)/S.>¢c;} dominates the estimator 3
given in (1.4). Also, a lower bound of the risk improvement is given by

(2.11) (0*/n) E [{(N(X,) —2)*V=(F.) 2—(F.)/F] -
PrROOF. First write the risk difference
(2.12) R(8, 3%)—R(8, 9)
ot B [V SI=DED £ (% 0L ]

n

+nE| ((N(X,, 82)—2)"V(F,) 3%

L3y
F,ﬂ2 ni [lxnil/sn>°i] .

Again, calculations analogous to (2.5)-(2.7) give

(2.13) é}l B [ (N(X,, Sf});y— 2)*(F,) X’M(X'M — 0t)I[I'X'MI/S,,>C,]:|

n

2(o*/n) E [{((N(X,, S)—2)*Y«(F,)|F.] .

Again,

(2.14)

((N(X,, S)—2) V< (E,
B[

<EE [ (V(X,, sz)F—2)+}2r2(Fn) S| jﬂ] ,

n

) &g
2 —
3 Ridim, 5,500

Note that conditional on X,=x,, if 0=2,<2z,<---<z,, denote the or-
dered 7./c}, then (N(X,, s})—2)* assumes the value p—2—1 for z,,<s?<
2w (1=0,1,---,p-38), and (N(X,, 8})—2)*=0 for 8:>z,;5. Write b=
d*(n—1)p+2)~!, k=(n—1)p. Noting that S:~byi, and using the inde-

pendence of X, and S2, one gets,
(2.15) E [{(N(X,, 83)—2)*}(<X(F,)|F,)S:| X, =X,]

_P—3 __.zznmfm _ Mﬂl-
=502 | T e Ve v R

Now, using integration by parts, and the fact that «(m) 1 in m, one
gets, rhs of (2.15)
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(2b)? 220\ 5 [12)m — _ k/2+1
(2.16) ém}‘ 2 (p—2—1)*2*(|| XA |}/ 20777) [€XD (— 2,45/2D) (2,4/2b)*/

—eXP (—2,751/2) (Zn+3/2b)*2 ]
+ 25 o2 )”S"”“/ exp (—u) -2
n ou

A X 2bu)ut ) ——— F(k/2)

Since, exp (—v)v*** is a concave function of v with a maximum at v
=(k/2)+1>2,;=, then every term in the first expression of (2.16) is
negative. If, on the other hand, 2,;<(k/2)4+1=z,;; for some j (0=j=<
p—3), then (p—2—1)*z%||X,||*/2,s7:) being nonincreasing in ¢, it follows
that first term in the rhs of (2.16)

(2b): 9 Y IE |
2.17) g__l|f,,[|2f(k/2) (P—2—3)'7"(||Znl*/2075)

+ 55 [eXD (— 20/ 20) (20 20" — €XD (—2,555/20) ([ 20)]

—_— (2b)2 9 __ 2 22.2 > |12 R _ k/2+1
—m(ﬁ 2—9)'7%(|| X, |*/24777) [€XD (— 240/2D) (2,0/2b)"

— XD (—2,5=3/2b) (z,5=3/2b)**+'] <0 ,
since 2,=0<2z,;=. Now, using z(m) 1 in m

2.18) {12y} < (§+1)r*(ux,.||2/2bu)um :

Now from (2.14)-(2.18), it follows that
219) EE [{(N(X,, 8)—2)" P(HF)/F)Si| K]
<o B[5 (p—2—ip [ ZUKL) gy @200 dy ]

w1 XlPy) I'(k/2)  2b
=¢* E [{(N(X,, 81)—2)*V<(F,)/F,] .

From (2.12)-(2.14) and (2.19), it follows using 0<z(:)<2 that

(2.20) R(8, 8*)—R(8, 8)< —(*/n?) B [{(N(X,, S2)—2)*}
‘ T(Fn)(z_T(Fn))/Fn]<0 .

Also, (2.11) follows from the penultimate step of (2.20).

Remark 2.2. For unknown %, if instead we test H,: #=2 against
H,: 0+2, then the preliminary test estimator should be modified as

X, 8)=(X,, S2),---, 34X, SY)
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with

5‘1!(-iru S:)='zt+(XM—'Zi)I[]A—’M—-I‘[/Sn>ci] ’ 1::17 ce,D.

The corresponding class of estimators dominating 3 is now given by
3)(X,, S?) with its i-th component equal to

531‘.(X-m S:) = 21 + <1 - S:(M(Xm:i?r 2)+T(F;) >(XM_ 2{) ’

with NXAX,, S)=#{i: |Zp—A/s.>c;} and Fi=|X,—a||%/S:.

UNIVERSITY OF FLORIDA
THE UNIVERSITY OF CONNECTICUT

[11]
(2]
[31]

[4]
[51

[61]
[71

[81
(91

REFERENCES

Baranchik, A. J. (1970). A family of minimax estimators of the mean of a multi-
variate normal distribution, Ann. Math. Statist., 41, 642-645.

Bock, M. E., Yancey, T. A. and Judge, G. G. (1972). The statistical consequences
of preliminary test eéstimators in regression, J. Amer. Statist. Assoc., 68, 109-116.
Brown, L. D. and Hwang, J. T. (1982). A unified admissibility proof. Statistical De-
cision Theory and Related Topics III, Academic Press, (eds. S. S. Gupta and J.
Berger), Vol. I, 205-230.

Faden, A. M. and Rausser, G. C. (1976). Econometric policy model construction: the
post-Bayesian approach, Ann. Economic and Social Measurement, 5, 349-362.

Meeden, G. and Arnold, B. C. (1979). The admissibility of a preliminary test esti-
mator when the loss incorporates a complexity cost, J. Amer. Statist. Assoc., T4, 872-
874.

Nagata, Y. (1983). Admissibility of some preliminary test estimators for the mean
of normal distribution, Ann. Inst. Statist. Math., 35, 365-373.

Sclove, S. L., Morris, C. and Radhakrishnan, R. (1972). Non optimality of prelimi-
nary-test estimators for the mean of a multivariate normal distribution, Ann. Math.
Statist., 43, 1481-1490.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution, Ann.
Statist., 9, 1135-1151.

Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate
normal mean, Ann. Math. Statist., 42, 385-388.



