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Summary

Stable laws for M-estimators, maximum likelihood and other esti-
mators and obtained through parallel results for the estimating func-
tions and relative compactness of some related estimating functional
processes.

1. Introduction

Let {P,),cs be a family of probability measures on (&, _f), indexed
by the parameter 6 ¢ ®, where the parameter space 6 is a subset of
the p-dimensional Euclidean space R?, for some p=1. Let {X,,i1=1}
be a sequence of independent random vectors (r.v.) (not necessarily
identically distributed (i.d.)), such that under P,, X, has a probability
density function (p.d.f.) fi(x, 0), for t=1. Let 5z, §), t=1 be R?-valued
functions on X' x@. Then an estimating function (p-vector) may be
defined (viz., Huber [4], Hajek [8], Inagaki [5], [6], and others) as

(1.1) S,(t)= 2 wXut), teRe,

and if T,=T(X,,---, X,) be a RP-valued r.v., such that for some given
a>0,

(1.2) n~*S(T,)—0, in probability, as n— oo,

then, T, is termed a derived estimator of 6; the maximum likelihood
estimator (MLE), Huber’s M-estimator and some others all belong to
this class of estimators derived from suitable estimating functions. In
the literature, the specific case of a=1/2 has been treated in detail
(see the references cited above), where the asymptotic normality of

* Work supported by the Office of Naval Research, Contract No. N00014-83-K-0387.
Key words and phrases: Asymptotic distribution, estimating functions, M-estimators, max-
imum likelihood estimators, relative compactness, stable laws.

411



412 PRANAB KUMAR SEN

n~2S,(0) plays a vital role. It is quite conceivable that in a general
setup, for some a=1/2, n~*S,(d) may have (asymptotically) a (multivar-
iate) stable distribution (note that the characteristic exponent of the stable
law in our notation corresponds to «¢~!, and the particular cases of nor-
mal and Cauchy distributions correspond to «=1/2 and 1, respectively).
In the normal case, the asymptotic (multi-) normality of the estimating
function 7~'2S,(6) and of the derived estimator (i.e., n"*(T,—0@)) are
equivalent. The question may therefore arise whether a similar equiv-
alence result holds when, in general, n=°S,(8) has asymptotically a stable
law, for some «¢=1/2, and the present note provides a (distributional-)
invariance result in this direction. It is shown that under suitable re-
gularity conditions, an asymptotic stable law for n==S,(6), for some «
€ [1/2, 1], ensures an equivalent stable law for n'~*(T,—6).

Along with the preliminary notions, the main theorem is presented
in Section 2, and its proof is outlined in Section 3. The last section
deals with M-estimators of location in the general multivariate case.

2. The main theorem

In the regular case of a=1/2 (i.e., asymptotically normal law), it
has been assumed (c.f. Inagaki [6]) that E»(X;, 6), =1 all exist and
are continuously differentiable (with respect to 6); the differential co-
efficient matrices play the dominant role in the asymptotic equivalence
results. In the general case, though E||7/(X,, 6)||* may exist for every
k<a™!', we may not be in a position to assume that E7(X;, 0) is finite
(particularly, when a@=1) or the variance of »/(X,, 0)—7(X;, 0') is finite
(when a>1/2). Hence, to justify (1.2), in the general case, we assume
that

(2.1) n~=S,(8) has asymptotically a stable law G with center-
ing parameter 0,

where we confine ourselves to
(2.2) 1/2<a<1 .

We may note that for e¢>1, n'~* converges to 0 as n— oo, so that even
if n'~%(T,—0) has asymptotically a non-degenerate distribution, T, may
fail to be a consistent estimator of ¢, and hence, we may not have
much interest in the asymptotic properties of {T,}.

For every d € R?, we let

2.3) U(X,, 0, d)=7(X,, 0+d)—7(X, 0), i=1.

For an arbitrary block B=(u, v] (where u<v and both belong to R?),
we define the increment functions as
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24) UB)=3y,-0usesn(— 1) U(X,, 0, u+J(v—w)), 121,

where J=Diag (i, -, J,), and let A(B) be the Lebesgue measure of B.
Then, we assume that for every compact set 8,6, there exists posi-
tive numbers d,, D and an r (>1), such that for every 1=1,

2.5 E|U(X, 0, DII'=Dlidl",  vd: [d]l=d,,
E|UMBI'=DAB)I,  Vu,v: |ullSdy, ||v]=d,.

Let us also denoted by

(2.6) —r,=lmx {d'E[U(X,, 0, dey),- -+, U(X,, 0, de,)]} , i=1,

where the ¢, are p-vectors and e, has 1 in the j-th position and 0 else-
where, for j=1,.-..,p. Let then

@.7) Fi=n"'3I,, nzl.
i=1

We assume that there exists a positive integer m,, such that
(2.8) I, is nonsingular (ns) for every n=mn, .

Note that if in (2.2), a=1, n'~* is also equal to 1. In this case, we
may need to assume that (2.5) holds for every d,>0, and this will be
referred to as (2.5'). Also, in this case, we may need to strengthen
(2.6)-(2.8) to:

(2.9) lim“n“}%‘_'E,Ui(X,, 0, d)+Id|=0, v(fixed) deRe,
n—oo i=1

where I', does not depend on d and it satisfies (2.8). Then, we have
the following.

THEOREM 1. If in (2.2), a€[1/2,1), then under (2.1), (2.5), (2.6)
and (2.8)

(2.10) =T (T,—6) has asymptotically the stable law G ,
where G is defined in (2.1). For a=1, under (2.1), (2.5') and (2.9),
(2.11) I'(T.—60)  has asymptotically the stable law G .

The proof of the theorem is provided in the next section. Note
that for =1/2, in (2.5), we may take r=2, although the second mo-
ment may not exist for a>1/2; for our purpose, r>1 suffices. Also,
our (2.5) is more easily verifiable than the sup-norm moment condition
in Inagaki [6] or others.
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3. Proof of the main theorem

First, we proceed to construct a sequence of estimating functional
processes and establish its tightness (or relative compactness); these are
then incorporated in the proof of the main theorem.

For some arbitrary positive K (<o), let C=[—K, K]* be a com-
pact subset of R?. For every n (=1) and (fixed) 6 ¢ @, we consider a
(vector-valued) stochastic process W,={W,(u); u € C} (belonging to the
space D?[C], endowed with the (extended) Skorokhod J-topology), where

31)  Ww=n"3 [UX, 6, n"u)—EU(X,, 6,n"'w)], ueC.

Then, we have the following.

LEMMA 3.1. For every ac€[1/2,1), under (2.5), or under (2.5') for

a=1,
3.2) sup || W.(uw)||—0, in probability, as n— oo .
ueC

PrROOF. Without any loss of generality, in (2.5) [or (2.5')], we let
re(1,2]. Note that by (2.3) and (3.1), for every (fixed) u € C, Wi(u)
involves (n) independent summands. Thus, using a version of the L?-
convergence theorem (viz., Chatterjee [2]), we have, for every 7€ (1, 2],

(3.3) E,|Waw)|r <dn-" 2 B\ U(X., 6, n=w)|l .

Now, by (2.5) (for a<1), for every d,>0, there exists an n,, such that
n*tu||<d,, for every weC and n=m,; for a=1, (2.5) ensures the
same. Hence, for n=mn,, the right hand side (rhs) of (3.3) is bounded
from above by

(3.4) 4D,n—ra,n—r(1—a),n ”u”r gc;kKrn—(r—l) ,

where ¢* (<o) is a positive number independent of u € C. Since the
rhs of (3.4) converges to 0 as n— oo, by using the Markov inequality,
we obtain that for finitely many (say, m) (arbitrary) points u,- - -, %Un
(all belonging to C),

(8.5) [Walw),-*+» Wo(tn)]—(0,--+,0),  in probability, as n—oo.

Thus, to establish (3.2), it suffices to verify the tightness of {W,}. To-
wards this, we define a block B=(u, v] (for u,v € C) as in before (2.4),
so that as in (2.4), the increment of W, over the block B is given by

(3.8)  WiAB)=Z(m01usesn(— 1) W (u+J (v—u))
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=n"° é Euk=o,1;15k5m(—]_)p—).'kjk i
[U(X,, 8, n*(u+J(v—u)—EU(X,, 0, n*(u+J(v—u))]
=n"“ é [Unt(B)_EpUM(B)] , say ,

where the U,(B) are independent r.v., so that proceeding as in (3.3)
(8.4), we obtain that under (2.5) (for n=n,) (when a<1) or (2.5') (when
a=1),

(3.7) E|WAB)|rsctn~""P[AB)]",
for some r>1, and every BcCC.

This in accordance with the multiparameter version of the classical
Billingsley [1] inequality ensure the tightness of W,. Q.E.D.

Next, we note that by (2.5), (2.6) and (2.7) for evey a€[1/2,1),

—0, as n—oo,

3.8) “n 31 BU(X,, 0, e u)+

uniformly in u ¢ C, while, (2.9) is just the same result for a=1. There-
fore, from (3.2) and (3.8) (or (2.9) for e=1), we obtain that an n— oo,

—0,

(3.9) sup ||n 31 19Xy 0+~ =X,y 0)+ T

in probability .

Now, by (2.1), n™° i‘, 7(X;, 0)=n""S,(f) has asymptotically a stable law
i=1

G (with centering parameter 0), and without any loss of generality,
we assume that G is nondegenerate (otherwise, the results will be tri-
vial). For nondegenerate G, n="S,(d) is O,(1) and is nondegenerate too.
On the other hand, using (2.8) and (2.9), we claim that for every >0,
there exists a compact set C, (in R?) such that on writing T,=0+
n~4-2y, (with T, defined as in (1.2)),

(3.10) Plu,eC.|0}=1—¢, for every n=n,.

It may be noted that by virtue of (2.8), though u, may not be unique,
all such solutions are convergent-equivalent, in probability, and hence,
for the asymptotic distribution of T,, any one of these would be us-
able. Consequently, from (3.9) and (3.10), we obtain that as n— oo,

(8.11) n*S(T,)—n"S,(6)+n'~I(T,—8)—(0, in probability,

so that using (1.2) and (38.11), we arrive at (2.10) and (2.11). This
completes the proof of the theorem.
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We may note that the asymptotic linearity result in (3.9) has been
used as the main tool in the proof of the asymptotic normality of
n"*(T,—0) for the regular case of «=1/2; it plays the same role in the
general case of a€[1/2,1]. One of the advantages of using the esti-
mating function in (1.1) (instead of the usual likelihood function) is that
it may be used to study the asymptotic behaviour of the MLE when
the model may be incorrect. For example, if h(z, 6), =1 be the as-
sumed p.d.f.’s for the r.v.’s X,, ¢=1, while the true p.d.f.’s are the
fi(x, 8), 1=1, the 5., 6) will be defined in terms of the &, (-, ) whereas
(2.5) through (2.9) can be verified with respect to the true p.d.f.’s
fi(+, 6. This will reveal the robustness of the MLE for departures
from the assumed model. A classical case relates to normal h-, 6)
against Cauchy fi(-,0), i=1, where, we would have a=1 and a stable
law of the Cauchy type.

4. Stable laws for M-estimators of location

Let {X;=(Xy, -+, X,,), 1=1} be a sequence of independent i.d.r.v.
having a p(=1)-variate continuous distribution function (d.f.) F, such
that the j-th marginal d.f. is symmetric about a location 4,, for j=1,
cve,p, 0=(6y,--+,0,) is the location vector. To estimate #, we use a
vector ¢ of score functions ¢,(u), w € R, j=1,---, p, where we assume
that for each j, ¢, is nondecreasing and skew-symmetric. Then, we
have the set of estimating functions

4.1) SA)=3 [9u(XKa—t, -+, 9 Xp—t)],  teR2.

Note that marginally, each iﬁ ¢«(X;;—0,) has a distribution symmetric
=1

about 0, and S,(f) is nonincreasing in each of its p arguments. Hence,
for (1.2), we may locate a closed rectangle for which S,()=0, and the
centre of gravity of this closed rectangle may be taken as the M-
estimator of §. The sample mean, median and MLE (vectors) are all
particular cases of these M-estimators.

Whenever the ¢, are continuous and satisfy a Lipschitz condition,
it is easy to verify that (2.5) holds; we do not need the ¢, to be
bounded in this context. Moreover, if the ¢, have continuous first or-
der derivatives almost everywhere (a.e.) (i.e., the set of points for the
discontinuities of the derivatives is of measure 0) or if the ¢, are con-
tinuous while the marginal densities have all finite Fisher information,
then (2.6) holds; we do not need (2.7)-(2.8) (as we are dealing with
i.i.d.r.v.’s here). (2.9) is of course more restrictive and demands some
sort of linearity of the expected values of ¢,(Xi;—0,—d,)—¢(X;,—0,).
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Thus, (2.10) holds under quite general regularity conditions, while for
(2.11), we need a more precise linearity result on the expected score-
differences. In this context, it may not be necessary to assume that
the ¢, are monotone. But, then one needs to assume that S,(f) has
location 0 (in some meaningful way), and one needs to verify (1.2) also
(as there may be multiple (non-equivalent) roots). Finally, for «<3/4,
one may also allow jump discontinuities for the ¢; (finitely often). For
some related linearity results, we may refer to Juretkova and Sen [7],

8].
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