Ann. Inst. Statist. Math.
38 (1986), Part A, 399-410

COMPONENT RISK IN MULTIPARAMETER ESTIMATION

KHURSHEED ALAM AND AMITAVA MITRA

(Received Mar. 18, 1985; revised Oct. 11, 1985)

Summary

For estimating the mean of a p-variate normal distribution under
a quadratic loss, a class of estimators, known as Stein’s estimators, is
known to dominate the maximum likelihood estimator (MLE) for p=3.
But, whereas the risk of the MLE has the same value, equal to a con-
stant, for each component, the maximum component risk of Stein’s
estimator is large for large values of p. Certain modification of Stein’s
rule has been proposed in the literature for reducing the maximum
component risk. In this paper, a new rule is given for reducing the
maximum component risk. The new rule yields larger reduction in the
maximum component risk, compared to its competitor.

1. Introduction

Stein [6] obtained the surprising result that for estimating p in-
dependent normal means simultaneously, the maximum likelihood estima-
tor (MLE) was inadmissible under the sum of squared errors as the loss
function, when p=3. Subsequently, an explicit estimator dominating
the MLE was given by James and Stein [3]. However, the James-Stein
estimator suffers from a serious deficiency in that whereas its total risk
is smaller than the total risk of the MLE, the estimate of an individ-
ual mean may be subject to much larger error than the MLE, espe-
cially when p is large. As Lehmann ([4], p. 308) puts it, “no one wants
his or her blood test or Pap smear subjected to the possibility of large
errors in order to improve a laboratory’s average performance”. In
this paper we consider the problem of controlling the risk due to an
individual component of the estimator, in order to limit the maximum
component risk. For this purpose we suggest a simple modification of
the James-Stein rule. Efron and Morris [2] have proposed a general
class of estimators for the same purpose. They have considered a
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family of such estimators which have been called “limited translation
estimators ”. However, the class of estimators, we suggest, is more
tractable mathematically and gives better performance than the limited
translation estimators of Efron and Morris, with respect to the maximum
component risk.

The proposed estimator (family of estimators) is denoted by » and
its improvement by »*. They are introduced in Section 2. Formulas
for the component risk function of » and »* are given in the Appendix.
Table 1 gives the maximum component risk of »* for various values
of an indexing parameter a. Some numerical results on the perform-
ances of n* are given in Section 3. It is shown in Sections 4 and 5
that » is minimax for sufficiently small values of ¢ and that »* domi-
nates 7.

2. Estimators 7 and %*

Let the p-component vector X=(Xj,- - -, X})’ be normally distributed
with mean 8=(8,,---, 8,)’ and covariance ¢’I, where I denotes the iden-
tity matrix. Let the loss function for estimating @ be given by

L, §)=3 (5:—6.)

where 3,=38,(X), denoting the i-th component of 4, is an estimate of
6,. It is known that the MLE, which is equal to X, is a minimax
estimator. Its risk is equal to pe®. The James-Stein estimator which
dominates the MLE, is given by

@.1) (X)) = (1—1@_§2E>X ,

when ¢ is known, S=§‘_J X? and v is a constant, such that 0<v<2.
1

When ¢ is not known, we replace ¢ by its estimate in the expression
for 0*. We shall deal mainly with the case when ¢ is known. There-
fore, we let s=1 in (2.1) without loss of generality. The risk of a* is
minimized for v=1. Therefore, we let v=1 throughout the following
discussion.

The James-Stein estimator provides a poor estimate of some of the
components of ® with unusually large values. It is because the factor
multiplying X in (2.1) unduly shrinks the corresponding components of
X towards the origin or the normal value. The modification of the
James-Stein estimator proposed by Efron and Morris is designed to con-
strain the estimator towards the MLE. The modified estimator is given
by
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— p —2 2
@.2) 2= (1———S—p«p—2)xt/8))xf ,

where p(u) is a suitably chosen function, which is ordinarily decreasing
on its domain 0<u<p—2. Specifically, the authors have considered
the function p=p,, depending on a parameter D, where 0<D<(p—2)"-.
It is given by

(2.3) po(w)=min (1, D/vV ) .

The estimator (2.2) with p given by (2.3) is denoted by 2.
We consider an alternative specification of p in (2.2), given by

2.4 = (=2 |

(2.9) p(u) P2+ @—1)u

where a=1 is a constant. The corresponding estimator » is given com-
ponent-wise by

2.5) 2X)=(1-2=2)x,,
T, /
where T,=(a—1)X?+S. Clearly, =0* for a=1.
Let (x)* denote the positive part of x. Substituting for the factor
multiplying X, in (2.5), its positive part, we obtain the estimator 7*,
given component-wise by

(2.6) ot = (1—%}3} :

We shall see below that »* dominates 5, component-wise. Therefore,
»* should be used in place of 7, in practice, even though »* is less
tractable than 5, mathematically.

A derivation of d* is given as follows: Suppose that 8,,---, 8, are
independently and identically distributed & priori according to a normal
distribution with mean 0 and variance z?.. A Bayes estimator of 6 is
given component-wise by

A 02
@.7) 6= (1- S )X. .
Now, X, is distributed marginally according to the normal distribution
N(, o*+7?). Therefore, S is distributed as (¢'+7%y? (chi-square with

p degrees of freedom). Hence

-2 1
EP—4__ 1 |
S gttt
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The James-Stein estimator (3*) is obtained by substituting (p—2)/S for
(e* 4797t in (2.7).

A motivation for the choice of the proposed estimator 5 is given
as follows:
We observe that the same shrinkage factor is applied to each com-
ponent of X in the expression for 8%, given by (2.1). If all the &’s
are fairly close to 0, then the components of X are substantially re-
duced in absolute value, leading to an improvement in the estimated
values. If there is a good number of moderate or large values of 8,’s,
then the factor multiplying X will be close to 1 and therefore o* will
not be very different from X. On the other hand, if most of the 8,’s
are close to 0 but there are a few large 6,’s, the estimated values of
these O,’s are heavily shrunk towards the norm. Therefore, the cor-
responding component risks become large. The presence of the addi-
tional term (a—1)X? in the expression for T, alleviates this problem
by bringing the shrinkage factor of X, closer to 1 when X, is large.
The mathematical tractability of » is also an important consideration
in the choice of the proposed estimator.

3. Maximum component risk of 7"

From (2.1), putting v=1, we obtain the risk of 9%, given by
3.1) R(3*, @):p—(p—Z)zE-;— .

The above formula shows that * dominates the MLE. Let R(3¥, 8)=
E(3}—0,)* denote the i-th component risk of 9% and let R}(6)=max

R(3¥%, ©) denote the largest component risk. Given Z:ﬁ‘, @, it can be
i=1

shown (Baranchik [1]) that R}¥() is maximum when all but one of the
components of @ are equal to zero and the remaining component is
equal to 4 2. The maximum risk as a function of 2 increases from
a minimum value of 2/p at 1=0 to a maximum R}, say, and then de-
creases, tending to 1 as 1—oo. The value of R} is approximately equal
to p/4 for large p.

Whereas R(3¥, 8) is maximized, given 2, for 8;=2 and ;=0 (5+#1),
to maximize R(y;, ), given by (A.4) of Appendix we maximize this
expression first with respect to 4,=@! for fixed 2 and then with re-
spect to 2. We maximize R(yf,8) similarly. Let (a7, 2°) denote the
maximizing value of (4;, 1) for »*. We have examined the ratio 27/2°.
For small and moderate values of p. The ratio is close to one. But for
large values of p the ratio varies considerably with the value of s, as
defined by (8.2). The figures for p=20 are shown below for illustration :
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s 0.50  0.60 0.756 0.80 0.90 0.95 1.00
A7[2°  0.40 0.84 0.48 0.60 0.91 0.97 1.00

To compare the component risk of  with é* we use the index
(3.2) s=(1—R(y,, 0))/(1—R(3¥, 0)) ,

which is a measure of the relative savings in the component risk of
at the origin, compared with 3*. We have found numerically that s
is a decreasing function of a with s=1 for a=1 when »=4*. Thus a
given value of s gives a corresponding value of a. The type of index-
ing given by (3.2) has been considered by Efron and Morris [2].

Numerical results. Formulas for the component risks of » and 5*
are derived in the Appendix. Table 1 below gives the values of the
maximum component risk (MCR) of »* with the associated values of
a for p=3(1)6(2)12, 16, 20,30 and s=.5, .6, .75, .8,.9,.95,1.00, and »
=1. The upper and lower figures in each entry represent the values
of MCR and «, respectively. The figures for the MCR in the last col-
umn of the table, corresponding to s=1 or equivalently a=1, represent
the MCR of Stein’s estimator d*, given by (2.1), with the factor multi-
plying X replaced by its positive part. It is seen from the table that
a small reduction in the value of s from s=1 to s=.95, say, leads to
a considerable reduction in the value of MCR for »*, especially when
p is large. Thus for p=380, the value of the MCR is reduced from
7.891 for s=1 to 2.078 for s=.95.

It is seen from Table 1 for the specified values of p that the value
of MCR is decreasing in s. We can use the table for application in a
simple fashion, as follows: Let p=12, for example. Suppose that we
can tolerate a maximum component risk not more than two times the
standard deviation of an individual component of X. We see that the
given condition is satisfied for a value of a equal to or smaller than
2.25. Therefore, we should use »* to estimate ® with the value of «
=2.25 approximately. On the other hand, the maximum component
risk for the James-Stein rule (e=1) is seen to be as large as 3.392,
approximately.

Let us compare the MCR values of »* with the MCR values of 47,
the limited translation estimator of Efron and Morris [2], given in
Table 1 of their paper. We find that the MCR value of »* is smaller
than the MCR value of 82 for each of the specified values of p and s.
The difference between the two values tends to increase with increas-
ing values of p. For illustration, consider p=10. The MCR values of
»* (3°) are 1.059 (1.14) and 1.603 (1.66) for s=.5 and .9, respectively.
Next, consider p=30. The MCR values of »* (3”) are 1.000 (1.16) and
1.533 (2.02) for s=.5 and .9, respectively.
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Table 1. Maximum component risk of »* and values of «

\;;\f\\ 0.5 0.6 0.75 0.8 0.9 0.95 1.00
3 1.049 | 1.066 | 1.004 | 1.106 | 1.13¢ | 1.156 | 1.215
5.61 4.16 2.74 2.38 1.76 1.46 1.00

4 1.071 | 1100 | 1.157 | 1.180 | 1.242 | 1.202 | 1.439
6.73 4.90 3.12 2.67 1.01 1.55 1.00

5 1.080 | 1.110 | 1.197 | 1.234 | 1.334 | 1.413 | 1.672
7.86 5.64 3.49 2.97 2.06 1.64 1.00

6 1.072 | 1.126 | 1.232 | 1.280 | 1.413 | 1.527 | 1.911
9.00 6.39 3.88 3.26 221 | 1.72 1.00

8 1.080 | 1.119 | 1.259 | 1.332 | 1.540 | 1.720 | 2.399
11.28 7.88 4,64 3.85 2.51 1.90 1.00

10 1.059 | 1.109 | 1.238 | 1.340 | 1.603 | 1.878 | 2.804
13.57 9.39 5.41 444 2.82 2.08 1.00

12 1.044 | 1.099 | 1.257 | 1.331 | 1.673 | 1.990 | 3.302
15.86 | 10.89 6.18 5.04 3.12 2.25 1.00

16 1.010 | 1.065 | 1.210 | 1.310 | 1.675 | 2.136 | 4.392
20.45 | 13.01 7.73 6.23 3.73 2.61 1.00

20 1.008 | 1.008 | 1.171 | 1.265 | 1.65¢ | 2.172 | 5.302
25.05 | 16.92 9.26 7.42 4.36 2.96 1.00

30 1.000 | 1.001 | 1.074 | 1.141 | 1.533 | 2.078 | 7.801
31.53 | 25.46 | 13.12 | 10.40 5.87 3.84 1.00

The upper and lower figures in each entry represent the MCR value of
7+ and the value of a, respectively.

4. Minimax property of %
The i-th component risk of 5 is given by
4.1)  ER(p, 0)=E(3(X)—6,)

=1-2(p—2)E(X(X,—6))/T)+(p—2YE(X?|T?)
=14+(p—2)(4da+(p—2)EX?/T)—2p—-2)E(T}") .

As X}/T,=y/((a—1)y+8) is a concave function of y=X?, from Jensen’s
inequality we have that

(4.2) 5 ;{: ss/<(°‘ p1)s s) ﬁf'

Since X?/T, is increasing in y and 1/T,=1/((e—1)y+S) is decreasing in
Y, we have

2 XP 1(& X\ (&1 1 1
4.3) —3_ (Z )(E ~T—> — > —, by (4.2).
From (4.1) and (4.3) we have

@4 E(y, ) sp+(p—2)( 2E2=D )3 7<
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for

(4.5) as

(YL

Therefore, 5 is minimax for all values of @, satisfying the inequality
(4.5).

Numerical values of the risk of 7 (not shown here) show that the
inequality (4.5), giving the values of a for which 5 is minimax, is fairly
sharp. For example, we find that for p=12 and «=6.18, which is slight-
ly larger than the upper bound »/2=6, the maximum risk is equal to
12.001, which is slightly larger than the minimax value 12. We find
also that even when 7 is not minimax, the maximum risk of 5 exceeds
only slightly from the maximum risk of the MLE or * which are
minimax.

When ¢* is not known but an estimate of ¢* is given by W which
is distributed as o’ (chi-square with m degrees of freedom) independ-
ent of X, we let 5, be given by

It can be shown that 5 is again minimax for a=<p/2.

5. Dominating property of 7*

Lehmann [4] gives an interesting proof of the result (Theorem 6.2)
that the James-Stein estimator 8* is improved by replacing the factor
of X in (2.1) by its positive part. Following his argument, it is straight-
forward to show that 5* dominates 5, component-wise. We state this
result but omit the proof.

THEOREM 5.1. R(y}, 8)<R(n,, 6), ¥6, i=1,---,p.

We have seen from Table 1 that the maximum component risk of
»* is smaller than the maximum component risk of the Efron-Morris
estimator 82. It does not imply that »* dominates 4°. We would like
to see when is one better or worse than the other. However, we do
not have figures for the risk functions to make the comparison, at this
stage.
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Appendix

Component risk of 3

First we give certain results which will be used in the sequel. Let
F,(x) denote the chi-square distribution function with m degrees of
freedom and let F, (x) denote the non-central chi-square distribution
function with m degrees of freedom and non-centrality parameter 2.
For a=1, let ¢, ,=c, .(a) denote the coefficient of #/ in the power series
expansion of the expression

wer(i-(1-1)a) ™.
44

LEMMA 1. Let y2, and 7., be independent chi-square random vari-
ables. Then

E(ax§t+xi,l)_l = E} cj,mE(xzn+n+2j,1)—l .

PROOF. By Theorem 1 of Robbins and Pitman [5] we have that

P{axgn'i'x:gw}:fz‘{) cj,mFm+n+2,1(x)

for each £=0. From the representation of non-central chi-squre dis-
tribution as a mixture of central chi-square distributions, the above
result is generalized as follows:

(A.1) Plep,+2.<7}= jﬁ C5mF sz (%) -

The conclusion of the lemma follows from (A.1). The formula (A.1) is
essentially given in Robbins and Pitman [5], but it is not explicitly
stated.

The component risk of y is derived as follows: Let i4,=6% 1=0'6,
let y3..: denote a non-central chi-square random variable with m degrees
of freedom and non-centrality parameter 2, and let

(1) ,b; =1 i a'(a+1)i2 cee
(@ bi )=+ a+ a2

denote the confluent hypergeometric function. We have
42 BT i=e 5 MY gy )

=e~4/? 1§) (—zfr/‘&‘ Ea cm,2r+lE(x;+2m+27,l—li)_1 (by Lemma 1)
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Py (A/2)" & Cm,2r+1
izrzo r! m‘v:o p+2m++2'r 2

xd)(l, 2 imtr; —(1-10/2)

e 2 —11/22 (11/2) E S cm,zﬂ_‘(l__u)p/2+m+r-2e—(1-lt)u/2du

7=0 1" m=0

; —1/ % ( 1/2) So —r—l/Z(l_u)p/2+r—2

e
_— "‘t” (2;/2) —\p/2+r-2

- 2 /! rzo S (1 u) /2+

X (L-+ (a—Lyw)r-g-d-rovndy,

=% S: (L— w1+ (@ — L)~

_Au _ Afe—D)u(l—wu)
xexp( 2 2(+(e—1w) )d“

Similarly
(A3) EXTH=-— J ' g %
=ZS u(l— u)p/z A+ (a— 1)u)—s/z<1+_1—;_((t_%>
Aa—D)u(l— u)
XeXP( _—2— 21+ (@—1)u) )

From (A.1), (A.2) and (A.3) we get

(A4)  Riny O)=1+ 1 (p—2)(da-+(p—2))| || L= (14— 1y

><<1+(;‘ 1)u< 1+ta ul)u2‘>_4a+é)—2)>

(a—1)u(l— u)
X exp ( 2” 201+ (a— D) )d“]'

Putting #=0 in (A.4) we get the component risk at the origin,
equal to

(A5) Rz, 0)=1+> T (0—2)(da-+(p— 2))8 (1— w1+ (a—Lyu) ™

u 4
% <1+(a——1)u—4a+(p——2)>du
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=1+ 1t p-2pe [ F(2, £-1; y1; 21

P 2° 2 2 a
—__2ap F<_1_’_1g_1;_p_ a—l)]’
lat(@p—2) \2'2 2" a

where F'(a, b; c; x)=1+ﬂx+a(—atib(b—+—lli+ - -« denotes the hyper-
c c(c+1) 2!

.
13

geometric function.
The value of R(3F, #), the component risk of &%, is obtained by
putting a=1 in (A.4). Thus we have
1
(4.6) RO, 6)=1+1+ 0—-2(¢+p—2) || Q- ut+a01-w)

4
4+(p—2)

Putting @=0 we get
(A.7) R(3¥, 0)=2/p .

]e"‘“”du .

The maximum component risk of 4* is obtained by substituting 2 for
A; in the square bracket on the right side of (A.6) and maximizing the
corresponing expression for R(d7, ), with respect to 2.

Component risk of n*

We have
77(X)=X,+9/(X)
where
_Q;_Z)_Xt for T,>(p—2)
g(X )= !
—X, for T.:<(p—2).
Therefore

(A8) Rt O)=1+Pp—-2(at+@-2)|  (XHTHGX,T)

T;>(

—2p-2) |  TOAGT)+|  (Xi-2dG(X, T)

T;>(p- iS(p—

where G is a generic notation for the cdf. With the help of Lemma
1 we obtain after simplification

@9 | @rHaeE.T)
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—g i i Q_,/_g)','("l-}-_%‘) i Cs 542r
— ! 8=0

Ms

( ((A—=2,)/2)

=0 \ t{(p+2r+28+2t—2) (p+2r+2s+2t)

5 [1_ ((p—=2)[2)7*+ 71 o
I'(p/2+7r+s+t)

xd>< p+r+s+t (p22)>}

(A.10) SM_ TdG(T,)
o G S, S (G-l

r! :—o o tl(p+2r+2s+2t—2)
K [1—groon (p=RRpr
I'(p/2+1+8+1)

><¢<1, %+r+s+t; _(p;Z))] ,

(A.11) Sm (X —2)dG(X,, T))
__e—x/zz (1+27;')(2i/2)' 5 go ((2 t/‘h)/2)’

(p—2)[2)H++r+ets —(p—2>/z¢;<1 » (2-2))
T@2+2+7 151D e +24+7r+s4t; 5

ST P Y

r!

((p—2)/2)Pr+r+e+t —(p—2>/2¢<1 ﬁ t+1: (p_2)>
F(p/2+1+r+s+t)e g TSt

We substitute for the integrals in (A.8) their corresponding values
given by (A.9) through (A.11).
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