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Summary

This paper is concerned with estimation for a subfamily of expo-
nential-type, which is a parametric model with sufficient statistics. The
family is associated with a surface in the domain of a sufficient stati-
stic. A new estimator, termed a projection estimator, is introduced.
The key idea of its derivation is to look for a one-to-one transforma-
tion of the sufficient statistic so that the subfamily can be associated
with a flat subset in the transformed domain. The estimator is defined
by the orthogonal projection of the transformed statistic onto the flat
surface. Here the orthogonality is introduced by the inverse of the
estimated variance matrix of the statistic on the analogy of Mahala-
nobis’s notion (1936, Proc. Nat. Inst. Sci. Ind., 2, 49-55). Thus the
projection estimator has an explicit representation with no iterations.
On the other hand, the MLE and classical estimators have to be sought
as numerical solutions by some algorithm with a choice of an initial
value and a stopping rule. It is shown that the projection estimator
is first-order efficient. The second-order property is also discussed.
Some examples are presented to show the utility of the estimator.

1. Introduction and results
First let us look at a linear regression model
y=XB+e

with a design matrix X of size nXm and a parameter vector 8 of m-
component. Here the error term e is supposed to have the n-variate
normal distribution with mean 0 and covariance J,. The statistical
estimation for the model enjoys a simple and intuitive interpretation.
The model locus
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385



386 SHINTO EGUCHI

MX={XB: BcR"}

is flat in the data space R*. The MLE, or the Gauss-Markov estimator,
of B has a closed form

B=(X'37'X)"X'Sy
which is the orthogonal projection of y onto X with respect to ( , ).
Here ( , ) is an inner product on R" defined by {y, y:)=y!2:'y,. At
the same time, the MLE is a minimizer of the squared Mahalanobis
distance

D'=|y—XBI
with the norm || || defined by ( , >. The Pythagorean identity
ly— XBI*=lly— XBI*+I| XB— XBIP

holds. Thus the problem is reduced to the Euclidean geometry asso-
ciated with the metric {( , >. There are a number of books from this
geometric viewpoint, see e.g. Draper and Smith [5] and Takeuchi, Yanai
and Mukherjee [12].

Secondly we consider the ABO blood group model. Let a, b and o
be the frequency parameters of genes A, B and O respectively, so that
a+b+4o0=1. The expected probabilities of the four phenotypes in ran-
dom mating are given as follows:

Phenotype Expected probability
A m=m(a, b)=a*+2a0
1.1) B my=my(a, b)=>b"+2bo
0 my=my(a, b) =0*
AB n=n(a, b)=2ab

with o=1—a—b, see §5g in Rao [11]. For observed probabilities 7;, ,,
Ps and P, with sample size n, the likelihood is given by

n!
(2P} (nD:)!(nPs)! (nD,)!

This lead to the likelihood equation system

PARRY ALY X ST

12 Po_Prp Py Pip_o, — Py Py Pryy Pig—yg,

(31 Ty T3 Ty Ty Ty Ty T,
which forms an algebraic surface of degree 5. The explicit representa-
tion for the MLE is not known. So we have to use some algorithm
so as to obtain the value of the MLE. It is troublesome to look for
an initial value and build a stopping rule of iteration. Thus it is seen
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that the simple structure of the MLE under the linear regression model
is spoiled for the ABO blood group model. This aspect may be caused
by the reason why the model locus

M= {(z(a, b))iy,.....: (@, b) € S;}

is non-flat in the space of four cell probabilities, where S, denotes the
open simplex of dimension 2, see Fig. 1.
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Fig. 1. The model locus of ABO blood group model from the space of gene

frequency parameters. Here we look at the locus in the 3-dimensional sim-
plex in place of the set {(71, 73, T3, m4): Wi+ 72+ T3+ 7i=1, 720, i=1,-.-,4}.

The likelihood equations (1.2) are expressed as
Xa,b a,b{"(ar b)_I_,} =0 ’
where V,,=diag (1/x,(a, b), 1/ny(a, b), 1/my(a, b), 1/x(a, b)) and

0
A , b
da =(a, b) 0, —b, —o0, b
Xa,b= =2
0 —a, o0, —0,a
—_ , b ’ ’ ’
% n(a, b)

with =(a, b)=(z(a, b))iy,.... and p=(P;);-y,..... Since the tangent vectors
(9/0a)x(a, b) and (9/0b)x(a, b) are parameter-dependent together with the
weight matrix V,,, the MLE cannot be obtained by the projection onto
the known flat subset.

In order to reform the difficulty with the MLE, we introduce a new
estimator, termed a projection estimator. We state the definition of
the estimator in more general situation. Let & be an nm-dimensional
exponential family of densities with respect to a sigma-finite measure
¢ on a data space R", which is

F ={fo(x)=exp (x'0—(0)): 6 €6}

with a natural parameter vector 8, where
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6= {o ¢ R": S exp (x'8)du(x) < oo

The family & is often expressed by the expectation parameter vector
7 with the transformation

n:S xfo(x)du(x) .

It is known that the relation #=(2/08)¢(8) holds if @ is an open subset
of R, which is assumed hereafter. Throughout this paper, we focus
on a situation with more knowledge of experiments, so that the family
of our interest is reduced to a subfamily of lower dimension m :

F={fow(x) e F: ucl}

with an open subset U of R™. Here the mapping 8(-) of U into 6 is
supposed to be non-singular, i.e., the Jacobi matrix of 8(-) is of rank

m on U. From this assumption the family G is associated with a

smooth surface {#(u): uc U} of dimension m in 6. Similarly & has a
locus {m(u): ueU} in the expectation parameter space /I, where x(u)
=(0/08)¢[0(u)] and IT={(2/06)¢(8): 6 € 6}.

Let (x;, X;,- -, Xy) be a random sample from a population with den-
sity few) with a parameter vector u to be estimated. Note that the
sample mean vector X=(x;+X;+---+xy}/N is sufficient. Further X is
the MLE of = if the underlying density is supposed only to belong to
the full family &. Let ¢ be a one-to-one transformation of = into z.

We say the family & to be flat with respect to ¢, or z-flat if there

exists a parameter vector v of & with the transformation & of u into
v such that ¢ is an affine mapping of v, i.e.,

1.3) Plm(w)]=X§(w)+c

with a known matrix X of size » X m and a vector ¢ of dimension ». The
relation (1.3) is equivalent that the image {@[r(u)]: u € U} is the inter-
section of an m-dimensional plane and the image {@(x): = € I}.

The implicit function theorem leads to a local existence of ¢ such that
& is flat with respect to ¢. Generally we cannot give a construction
of ¢. However we will show in a subsequent discussion that such a
transformation for some genetic models is possible to be naturally con-
structed by using the genetical relations.

Ezxample 1. We consider a genetic model that two factors are link-
ed with a recombination fraction u, see § 5g in Rao [11]. In the case
of coupling, the cell parameters are described as
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nl(u)=%(3—2u+u2) :
m)=r) =1 Qu—)

n4(u)=i_(1—2u+u2) ,

Then in terms of a transformation &(u)=(1—wu)’ this model is flat with
respect to the identity mapping, or
(1 _1 _Ll>' <lllo>’
mw)= (4 — 5~ 3) f0+ (5 0)
Mahalanobis [10] proposed a notion of a generalized distance. We
apply this notion to our situation with respect to the transformation

¢ of m into z. A quasi-distance between densities fr, and fx, in & is
introduced as

(. —7)(Vare, ¢(X)) (7, —72) »
or an approximated version
(71—7) Iz (71— 7) (=D¥(zy, 72), say)

with the Fisher information matrix I of =, where z,=¢(x;) and z,=
é(m;). For notational covariance we write ¢[m(u)]=Xu+c by reparam-
etrization of u into v. Further we write z(u)=¢[x(u)] and #=¢(X).
Then a minimizer of D%, z(u)] with respect to u is given as

a=(X'LX)" X' Te(#—c) .

We call @z a projection estimator corresponding to ¢. The statistic z(&)
is the point projected # onto the flat surface {r(u): wcU}. At the
same time it holds that

D[#, o(@)]=D'[#, e@)]+D{z(w), =(@)]
for any u in U, where
ﬁz(rl, ) =(t,— 1) Le(z,—7,) .

Note that # is a sufficient statistic and the MLE for the full family <&
without structure. The projection estimator @& has the following prop-
erties:

(1) Let & be a parameter transformation of u into v. Then the pro-
jective estimator ¥ of v has a property D==§(u).

(2) The projection estimator corresponding to ¢ 1is invariant under
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one-to-one affine transformations of ¢.

(8) The limiting distribution ¥N (t—u) is the normal law JI[0, (X'
LwyX)™. That 1is, the projection estimator is first-order efficient.

(4) The statistic ND¥z, (@) follows asymptotically the y* distribution
with (n—m) degrees of freedom.

Note that the property (1) is also satisfied with all the contrast
estimators, see Eguchi [7]. The proof of (2) follows from the invari-
ance of D’ under one-to-one affine transformations. The proofs of (3)
and (4) are immediate on account of the usual delta method, since
¥ N (+—z(uw)) converges to JI[0, I:},] in distribution.

When we consider as if the sufficient statistic # followed the linear
regression

t=Xu+te

with the normal error e of mean 0 and covariance I;', the projection

estimator can be regarded as the Gauss-Markov estimator under the
hypothetical model. It is natural for us to think that the approxima-
tion to the model should lead to some difference between the projec-
tion estimator and the MLE.

We investigate the second-order property of the projection estima-
tor by applying the formula of Eguchi [6]. Let & be a regular param-
etric family of densities with the carrier measure p:

P={py(x): 6 €6}

with the parameter vector (coordinates) 8. We call p a contrast funec-
tion on P if p(8,, 8,)=0 with equality if and only if 8,=8,. Note that
the function D* is a contrast function on &. The contrast function p
generates a metric I and an affine connection I on % which are
defined as

az
I9O) = ——° [
J ( ) aa:aeg P( 1 2) 01=02=0
(6 C 6,6
G )—_W‘D( 1 02) 0:1=03=0

with the coordinates #=(6*) respectively. On the other hand, Amari
introduced the information metric I and the mixture connection "™
to be the components

az
L,(0)=E[——W log pa]

m _ o* 0
r{p@)=E [W log e 20 log pv]
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9 log ps—— log s

"o
+ 06" 80 60"

log po]

with respect to @-coordinates, see Amari [1] for the historical back-
grounds. Applying this formulas to our situation, it holds on the full
exponential family & that

L) =1,x) ,

(1.4) ripe )-—{;—7 2 Lu(e)

') r)=-" I #(7) + Iki(")

with respect to z-coordinates, where z(zx)=¢(x) and =(z)=¢ '(z) with
the transformation ¢:mx—7z. Here we use the summation convension
as for the indices » and ! in the second equation. Note that the first
relation of (1.4) gives another proof of the first-order efficiency of the
projection estimator .

We adopt information loss as measure of optimality for estimation.
Let & be an estimator of u. The information loss due to # is defined
by the difference between the Fisher information matrix with the sam-
ple of size N and that with the estimator #, which we denote by 4,(i).
By applying the relations (1.4) to the formula of Eguchi [6], we have
that for the projection estimator &,

lim 4y(@)=lim 4y(@)+<* =T DY
where &t denotes a second-order efficient estimator, e.g. the MLE. Here
the (a, b)-entry of (I'™ —T"®»)? ig
(I TR — I XX EPE™
evaluated at the true parameter point z(u), where X=(X;),, and
EY=IY— XX/

with the inverse element I of I, and the inverse element I* of
X;I,,X]. Therefore the projection estimator # is not generally second-
order efficient. However the second-order inefficiency of & is not so
serious for us. Because the one-step MLE from the projection esti-
mator @,

d=u-+ I;'S(@)
is seen to be second-order efficient by using Theorem 1 in [6], where

I, is the Fisher information matrix of u and S(u) is the score func-
tion of u.
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2. Some examples

We present some examples applicable for the projection estimator.
First we back to the ABO blood group model in Section 1. The follow-
ing relations are easily seen from (1.1):

m(a, b) +my(a, b)=(a+o0)*, wy(a, b)+ny(a, b)=(b+0)*.

Based on this relations, we introduce a transformation ¢ of #=(x, n,,
7!'3)’ intO t=(T]_, Ty Tg)' by

t=¢(®)=(Vm+ms— V5, Vrtmy— Vg, V1) .

The ABO blood group model is represented as a linear form:

¢l#(a, b)]=(a, b, 0y =X(a, b)'+(0, 0, 1),

where

see Fig. 2.

Fig. 2. The deformation of {#&(a, b): (a, b)€S;} into {r(a,bd): (a, b) € S}
where S: denotes the 2-dimensional simplex.

By analogy with squared Mahalanobis distance D?, we define a func-
tion as

D(#, ©(a, b))={t—7(a, D)} V(Z) " {£—7(a, D)} ,

where V(#) is an estimate of the variance of # with #=¢((D;, D Ds)’)
and 7(a, b)=¢[#(a, b)]. The projection estimator corresponding to ¢ is
expressed as

o> KN

0
):(X’V(i-)“X)"X'V(é-)'l{z‘-— ( 0 )}
1
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by minimization of the function with respect to (a,b). We adopt the
inverse of the Fisher information matrix of = as V (%), i.e.,

V(z)'=J(x) 'G(x) (x)!
with #=¢7!(z), where G(&)=(8;,/m;+1/(1 —m;—m3—m3));, j=1,2,s aNd
1/(“' 7fl+77~'s) 0 1/(*/7’1+7Ta)_1/‘\/7f_a

T@=g 0 UWETm) YmTR-1E
0 0 s

On the other hand, the classical estimators including the MLE are de-
fined by minimization of the respective functions as follows:
The MLE ; the Kullback-Leibler

4
ox(D; “)ZE P log (Di/ry) ,

the minimum »* estimator;

b b
N AN
|
TN
/‘R\‘\QN\ /i_\\l |
PR AZZ5\
FESTNN = SN
(T TR NS
ST SIS
SOSNSET AT N, ES=ZZZ 4N
(i) The function D? (ii) The X2 divergence
b b
AN IAN
=]
[ 7SN
NS | N
IR
NS
I = =’ | a Iﬁ a
(iii) Kullback-Leibler (iv) The modified X? divergence

Fig. 3. Contours of contrast functions in the space of genes frequencies a, b.
For the corresponding contrast functions (o’s, say), we define a contour

C.={(a, b): p(X, =(a, b))=x}
centered at ¥x=(.38, .26, .11) with £=.1, .2,---, 1.0.
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= o\
xz(l_’, ”)zi—(p‘ 71'1) ’
i=1 T
the minimum modified #* estimator ; mod #*(p, #)=yx(x, p) and the min-
imum Haldane k-discrepancy estimator ;

4
o« D, ﬂ)zﬁo_?—x ”}_k—p—’f> .
As well as the MLE, other estimators have no explicit form. We note
that all the contours of these functions are sinuous in the parameter
space S, of gene frequencies @ and b. On the other hand, the contours
of D¥#, z(a, b)) form concentric ellipses in S;, see Fig. 3. A numerical
comparison among these estimators is given by the following table.
We observe from the table that the projection estimator has reasonable
values together with the classical estimators.

Table. A numerical comparison among the projection estimator and
classical estimators based on the simulated values generated at
(a, b)=(.3, .2) with replications 100.
(Case 1) (Case 2) (Case 3)
observed frequencies %=(.38, .26, .25, .11) %=(.37,.13,.31,.19) Z=(.44,.22,.18,.16)
(i) The projection estimator:

a=.28664 #=.30485 4=.36668
§=.20670 b=.13950 b=.21215
(ii) The minimum yx square
estimator: =.28704 d=.32254 a=.36673
b=.20722 b=.18154 b=.21216
(iii) The maximum likelihood
estimator: =.28098 4=.32499 d=.36673
b=.20709 b=.16932 b=.21213
(vi) The modified minimum
% square estimator: a=.28682 4=.30527 ‘d=.36674
b=.20669 b=.13423 b=.21205

Example 2. (MNS system of blood groups). We treat another
genetic model that consists of four allels MS, Ms, NS and Ns with
gene frequencies q;, ¢, ¢; and gq,, respectively, see Cepellini, Siniscalco
and Smith [4]. A population with random mating under the assump-
tion of the Hardy-Weinberg law follows from the phenotype frequencies :

phenotype expected frequencies
MS T =g +2q,q;
Ms Ty=(q;
MNS Ty =2¢193+ 2,94+ 2,0,
MNs 7 =244,
NS T =q3+24:q,

Ns me=qi
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because of the dominance of S to s. By the similar way to the ABO
blood group system, we define a transformation ¢ of #=(ry, m;, 7y, 7y, 7s)’
into T=(7y, 73, 73, 7s» 75)’ by

P(r)=(Vr +m, N1y, Vrstme, Vg, m/24/w; )
with ng=1—nm,—nm,—my—n,—n;. Thus the model has a linear form
@#(r)=Xq+b
with 71"=(77"lr Troy T3y Ty 71'5)” q=(Q1’ qz Qs),y
10 -1 —1 -1
X':(l 1 -1 -1 -1
0 0 0 —1 -1

and b=(0,0,1,1,1). Based on the observation quated by Cepellini et
al. [4]:

Phenotype MS Ms MNS MNs NS Ns
Data 44 35 62 47 21 21 (Total 230),

we have the projection estimate corresponding to ¢ is ¢=(.37419, .19649,
.2319)" and the MLE is ¢=(.3798, .2004, .2892).

Ezample 3 (linear covariance structure). Anderson [2] considered
the following structure

E(u)=u1V1+quz+ e +ume

with a parameter vector u=(u,, us,---, %,), where the symmetric ma-
trices Vi, V3, -+, V,, are linearly independent. He proposed a first-order
efficient estimator &#=G(S)'e(S) for a sample covariance matrix S from
J10, 2 (u)), where

G(S)=(trace (V.S™VuS™V)uo-1.2,...,m
and
e(S)=(trace (Vo.S™)acrz,eerm -

By our terminology, the model is X-flat and & is the projection esti-
mator.

Example 4. Guerrero and Johnson [8] apply a linear regression for
binary data adapted the Box-Cox transformation. Let {y,} be independ-
ently distributed binomial random variables Bi(N;, r;) for i=1, 2,---, n.
The Box-Cox transformation for the odds ratio is adapted as follows :
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¢1< T )=Zi’.3

1_‘71',;
with a parameter B8 and a regressor Z;, where

logt, 2=0,
¢1(t)={

11—, otherwise .

The random vector (¥, ¥, - -+, ¥,) associates with a flat model with re-
spect to g=(¢.° ¢,++, ¢, o ¢) where ¢(r)=n/(1—=). Thus the projec-
tion estimator corresponding to ¢ has a closed form

B=(ZVZ)ZVE,

where t=@((yi/Ny,- -+, Y./N,)), Z=(Z,, Z,,-++, Z,) and V is a diagonal
matrix of ({z,/A—7=)} (1 —7))iz1,2,e0ne

Example 5. We treat a tri-allelic locus model with inbreeding, see
Yasuda [13]. Let p, ¢ and r be the frequency parameters of alleles A,
B and C, so that r=1—p—q and let a be the inbreeding coefficient.
The phenotypes are given as follows:

Phenotype Expected frequency
AA m=pp'+ap
BB = .qu +aq
CC wy=pritar
AB T, =28pq
BC Ts=2pqr
CA Ty=2prp

with f=1—a. Noting the equations

1=M and I.:M,
P 2m+m q 2my+ms

we can construct a transformation ¢ of #=(ry, m,, n;, 7, 7))’ into z=(z,,
Ty Ty T4y Ts5)' DY

7,=2r+n,) Cry+15) [A(%)
7y=(2my+7,) 2my+7)[ A7)
3= (2r, +r,) 2ry +75)rms/[A(7)m,]

r=1— % T A7) {2y + 7)) Cry+75) 2y +,) (2, +705)}
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Ty= —%—- (1 —my—my—my—m,— 75) A7)’ o [{ Cre, + 7. )2 (2ry + 755}

where
2(”) = (277,'1 + 7!'4) (271'2 +7t5) + (27!'2 + 77.'5) (2772 + 774) + (271'2 + 71'4) (27['3 + 77.'5) .

Accordingly we have a linear transformation ¢(x)=(p,q,, a, B) for #=
(my, 3y 3y 74y ws) With relation to r=1—p—¢q and f=1-—a. That is to
say, the genetic model is flat with respect to ¢. Hence we can obtain
the projection estimator corresponding to ¢ in terms of the Jacobi
matrix of ¢.

3. Discussion

The method of estimation by projection has been found usefull in
both the computational and asymptotical aspects. We have to men-
tion as its demerit that this method is necessary to construct a trans-
formation of the sufficient statistic so that the model may be flat with
respect to the transformation. But we observe through some genetic
models that such transformations can be naturally sought by using the
relations among the phenotopic frequencies. Haberman [9] presented
a simple iterative method for obtaining the MLE in a model with in-
direct observation including our treating models. Burn [3] recommend-
ed the use of the program package GLIM by representing models as
loglinear form with composit link functions. It is our assertion that
we can obtain a first-order efficient estimate without such algorithms.

Furthermore we present a simple modification of the projection
estimator as follows. Return to the situations that the model is flat
with respect to a transformation ¢: x—r7, i.e.,

P(m(u))=Xu+tc .
The simplified projection estimator is defined as
i,=(X"X)"X"{$(X)—c}

with the sufficient statistic X. It is easily seen that the estimator #,
is Fisher-consistent, which implies to be strongly consistent. In this
way, we can introduce a strongly consistent estimator without the
evaluation of the Fisher information matrix of r=¢(x) at #=x.
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