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Summary

Approximate formulae using a large number of terms of Edgeworth
type asymptotic expansions for the distributions of statistics often pro-
duce spurious oscillations and give poor fits to the exact distribution
functions in parts of the tails. A general method for suppressing these
oscillations and evoking more accurate approximations is introduced
here.

1. Introduction

Intensive investigations have been made concerning the distribu-
tions of statistics in multivariate analysis. Work has been done on the
derivation of both exact and approximate distributions, and thrown
light on distributions of a large number of multivariate statistics (see
Muirhead [6] and Siotani, Hayakawa and Fujikoshi [11]). It should be
noticed that the problem of actually tabulating percentile points and
values of probability integrals by use of the results still remains to be
solved : exact distributions based on hypergeometric functions of ma-
trix arguments are too complicated to handle numerically, whereas ap-
proximate distributions are less accurate.

Some work of approximation is concerned with the derivation of
asymptotic expansions for the distributions of statistics, in which the
errors of approximation approach to zero as some parameter w, typi-
cally a sample size, tends to infinity. In order to improve the approxi-
mation, even for small n, further terms in an asymptotic expansion
may be required. However, Wallace [12] called our attention that Edge-
worth type asymptotic expansions for distributions of statistics usually
are not convergent infinite series for any fixed n, and that the addi-
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tion of the next term does not always improve the approximation.

Niki and Konishi [8] gave an asymptotic expansion up to terms of
order »~* for the distribution of the sample correlation coefficient, 7,
in a bivariate normal sample, which guarantees accuracy to five deci-
mal places even when the sample size n41 is as small as 11. It is
worth pointing out that the approximants to the distribution function
based on a higher order asymptotic expansion for the distribution of
r itself, when n is small, produced spurious oscillations and gave ex-
tremely poor fits in one tail. This is just the tail difficulty discussed
by Wallace [12]. To overcome this difficulty, we obtained an asymp-
totic expansion for the distribution of the transformed statistic

1 1+7r
=—1
A= log 1

instead of r itself.

In general, finite sums of asymptotic expansions suffering from the
tail difficulty contain notable oscillations around the exact distribution
functions in parts of one or both tails. Suppressing these oscillations
in some manner may induce convergence for divergent asymptotic ex-
pansions and must be useful for obtaining highly accurate approxima-
tions.

The main purpose of this paper is to introduce a procedure which
restrains the finite sums of the Edgeworth type asymptotic expansions
from oscillating and eliminates the tail difficulty. In Section 2, we dis-
cuss the attribution of the oscillations. A class of transformations for
suppressing these oscillations and evoking better approximations is in-
troduced in Section 3. In Section 4, the efficacy of the transformations
is illustrated through the examples of the sample correlation coefficient
and a x* variate.

Konishi ([3], [4]) has introduced a procedure for finding normalizing
transformations to obtain simple and accurate approximations to the
distributions of statistics. The theoretical approach discussed there is
further developed to the case of asymptotic expansions.

The larger part of formulae in this paper is obtained with the help
of a computer algebra (formula manipulation by computer) system,
REDUCE (Hearn [5]).

2. Order of Hermite polynomials in asymptotic expansion

Let T, be a statistic of which distribution depends on parameters
n and 6. Assume that there exists p=p(6) and ¢=0(f) such that the
standardized quantity
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%= VAT, p(6))
a(d)

has a limiting normal distribution with mean 0 and variance 1 as n
tends to infinity. Let k, (=1,2,---) be the j-th cumulant of the dis-
tribution of X,, and assume that «,’s are of the form

© ke oo _
(2.1) 'c1~kZ_Jl Ky, 001N~ FTOR Kz~1+kzi K, 261"
and for 1>1

= -Q2k—1 < -k
(2-2) Kzi—l"'k_zi‘. . Koi—1,26—-1T k-2 ’ lcgt~k§ . Ko, 2670

where the coefficients k,; depend on the cumulants of the population
distribution.

Then an asymptotic expansion for the distribution of X, collecting
terms according to the power of n~'% is obtained in the form

(2.3) Pr[X,<o]~0(x)—¢(@){n " a,(x) +n 'ay(x)+ 1" ay(x) + - - -}

where @(x) and o(x) denote the distribution function of the standard
normal variate and its derivative, respectively, and the coefficients
ay(%), as(x), as(x),- - - are given by

a,(x)= —(1;' kg Hy+ K1y s

az(x)z—,%z‘Kg,le‘l‘ (%‘ Kl,l"s,l‘l'—%zm,z)l{a'i‘ <% Kf,ﬁ‘% Kz,z>H1 ’

(%) =_1—219—6 k3, Hy+ <% K1,1K3,1 +—i:11_4_ K3,1K4,2> H;

+ <"'11?K¥,1K8,1+-2]:4_ K1,1K4,2+T12— K2,2K3,1+1—;6K5,8>H;

+ <-(1?,’— K?,H"%— K1,1K2,2+%- Ka,a>Hz+K1,s ’

Here H,=H/(x) (=1,2,83,---) is the Hermite polynomial of order j.
For further coefficients a,(x) (4<j<8) and Hermite polynomials of or-
der 23 or less, see Niki [7]. The validity of this type of expansion has
been discussed by Wallace [12], Bhattacharya and Ghosh [1] and so on.
In practice the values of the probability integral of T, are approxi-
mated by using a finite sum of the asymptotic series (2.3), that is,

Pr[T.<t]=Pr[X,.<x]
= Fo () = 0(x) — () {n~2ay(x) +n~'ay(2) + - - - +1" ™ an(z)} ,
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where z is taken as x=ym {t—p(6)}/a(6). It is of interest to note
that F,(x) contains the term

K31 m 1
(2.4) ( «/%> @m p Hom-1(2)e(@) ,
since each term in a,(x) (m=1,2,8,--:) can be expressed as
1

(81!)”1(82!)”2- ) .(sq!)pq.pllpz! .. _pq! K’x ‘1"% ) .Kgg'tq.Hp1’1+1’282+"'+1’q’q_1(m)
where pit,+pts+ - - - +p,t,=m (Petrov [9] gave the form of a,(x) when
the j-th cumulant of the distribution of a statistic can be exactly ex-
pressed as ;). For large j, the function h,(x)=H,(x)¢(x) is a highly
oscillatory function with j zero points and since

_ 1 (k)
I O)|=—= ==
and
1 1 (2k)!
lh2k+1(cu+z)l>zz—;s lhz:m(vc)ldw—-—Ihwc(‘m2 Vo R’

the magnitude of oscillations may be said to be of order I'(j)/I'(j/2),
where ({,; is the smallest positive zero point of hy(x). Hence the mag-
nitude of oscillations of the function

L (@)= ey Hin (®)e(@)

)= gt @

gets greater with hyper exponential order as m becomes larger (see Fig.
1). The maximum and minimum values of g,(x) for 2<x<3 and 3<
<4 are given in Table 1.

This table suggests that, if the value of |k;,| is nearly equal to

Table 1. The maximum and minimum values of gm(r) in the tail

max g (x) for 2<x<3

min
m 2 3 4 5 6 7 8 9
max 0.001 0.011 0.002 0.013 0.033  0.027 0.108  0.222
min —0.013 —0.002 —0.011 -—0.007 —0.018 —0.064 —0.046 —0.197
max

min In(®) for 3sz<4

m 2 3 4 5 6 7 8 9

max 0.002  0.000 0.003  0.000 0.0056 0.014 0.015  0.084
min 0.001 —0.002 —0.000 —0.004 —0.003 —0.009 —0.041 —0.029
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V7 or larger (this condition is often realized for relatively small n),
the absolute value of (2.4) for large m may exceed the value of Pr[X,
<x] or Pr[X,=2]=1—Pr[X,<«] in parts of one or both tails. In such
a case, noting that H,,_,(x) is the highest order Hermite polynomial in
F,(x), it may be seen that the approximation error

Cn(x)=F,(x)—Pr[X,<x]

is mainly caused by the oscillations in the tail parts of g,.(x). As seen
in Section 4, the error curve of C,(x) may also have notable oscilla-
tions, which violate both monotonicity and the 0-1 range property.
This seems to be the main source of the tail difficulty which Wallace

o 4,y..(:r)
]
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Fig. 1. Graphs of gm(x)= Hym—1(x)p(x) (m=2,3,---,8).
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[12] pointed out.

The above discussion suggests an approach for suppressing the trou-
blesome oscillations in the tails; that is, if we could eliminate the term
(2.4) from F,(x), the oscillations would fade from the tails. The key
of this approach to the tail difficulty lies in correction of the asymp-
totic skewness. If we take k;, to be zero, the highest order term in
F,(x) (m=2) can be reduced to the following form; when m is even,

(m)""*._.l_mm_l(x)w(w)
n /@) A(m2)!

and when m is odd,

KT {24:1,1&4,2 K_H_} . 1 =
nm? m—1 + 5 (4!)(m—1)/2((m__3)/2)! am-0(X)p(r)

Table 2 compares the highest orders of the Hermite polynomials in
a,(x) under the assumption that x;;,=0 or «k;;=«,,=0. The values in
the lowest row of the table can be easily obtained in the same manner.

Table 2. The highest order of Hermite polynomials in am(x)

m 1 2 3 4 5 6 7 8 9 10
general 2 5 8 11 14 17 20 23 26 29
if K3, =0 0 3 4 7 8 11 12 15 16 19
if Kks,1=FK4,2=0 0 1* 4 5 6 9 10 11 14 15

* may be reduced to zero by a linear transformation.

The requirement that the asymptotic skewness k;, is reduced to
zero may be achieved by a transformation of statistic. In the next
section we will give a general procedure for finding such a tranforma-
tion.

3. Transformations of statistics

Consider a one-to-one function f(T,)independent of n. We assume
that the derivatives of f(T,) of requisite order are continuous in a
neighbourhood of T,=pg(). It is well-known (Rao [10]) that the limit-
ing distribution of

y. = ¥/ {f(T)— f(n(6))}
" o(0)S"((6))

is normal with zero mean and unit variance.
The j-th cumulants 2, of Y, are of the same form as in (2.1) and
(2.2);
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Y ey VRE o aly P SRR
A~14n" 2+ 2 - -
A~V M Ry g

A~ N+

---------------

where 2,, are given by

A= af"(p)+2k,,f"(2)

2f'(p)
2y = 28 L) () + S () + 2001+ 200 Do S ()" (1) + 200 ' ()*
' 2f'(py
2, =30 (1) + K0, S (p2)
’ ()
20y = 28T () + 120" () +120k0, " (2) () + Kuaf " (2)*
' f'(p)

-----------------

As discussed in the previous section, a transformation which re-
duces 1,; to zero, if exists, may be effective to suppressing oscillations
and may give an accurate approximation. The condition 2;,=0 can
be realized by finding a function which satisfies the differential equa-
tion of the second order

@3.1) 3af" (1) + k5,1 f'(p)=0 .

Formally the solution can be written as
fw=a | exp (|- Ldp)dpta

with arbitrary constants ¢; and ¢, (irrelevant to the expression of Y,).
However, versatility in determining p=u(6) and ¢=0(f) and a problem
in obtaining &;,(z) and o(z) as a function of g remain to be fixed.

4. llustrations

This section illustrates the efficacy of transformations through two
examples concerning the y* variate and the sample correlation coeffi-
cient.

Example 1. Let y2 be the y* variate with n degrees of freedom.
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The standardized variate

is asymptotically normally distributed with_ zero mean and unit vari-
ance. It follows from (3.1) and k;,=2+2, that the transformation
f(x) must satisfy

3nf"(n)+2f"(n)=0 .

The solution of the above differential equation with respect to » is found
to be f(n)=n'®, which is the cubic root transformation due to Wilson
and Hilferty [18] for a y* variate. Hence the transforme variate is
given by

SRVATS (0 Ko Uil W \/W ()"~

" V2 n(1/3n 2 \'m

The distributions of the standardized y* variate X, and the trans-
formed variate Y, can be, respectively, expressed by the following
Edgeworth type asymptotic formulae:

(41) Pr[X,<u]~0(x)—o() {n“”(‘/—;z—- H2> +n"<% H+ % Hs>

_ 1 1 2 /1 1
IV (__H 1y —-H> 2<——H 1y
+n 31 s+ 3 et 5 4+ 136 u+ 18 9

47 2 e 1 1 31
47 g _H> 72 2< H H H,
o Hitg Bs) +0 2 (ogp Bt g Hut o5 Hu

! g+l g+ T g,

9 .. 4
By —H> -3(
g Bt )t 6o 972 3240

1
45 7

+ 298 g, 4 188 H9+IL>+n-’/2~/‘2’<———1 Hy

2160 " 175 1377810
+ 14;80 Hiat 9320 Hat 1310 Bt (13;3(1) H‘”%IL"
+%H ”>+”_4< 165313720 Hat 1311220 Hut 291106700 Ha
+a9a7 Pt Tt Ho a0 Ho+ Tge0 Ht 5 )
+0(n)|

and
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(4.2) Pr[Y,<x]~a)(x)—¢(x){n-*ﬂ<—ﬂ>+n-l<—LH3+l 1)
3 54 9
} 1 1 1 13
Tty o i
07 2 (55 Hik o By ) 07 s Hi— s Hy
31 26 13 181
——H——H> -5 2(- Hy— H,
186 oz )t V2 87480 ° 153090 '
19 58 40 1
H H, ) '3<———————H
t a8 T a9 T eg )t 944784 !
G187 g 216l g 215 L 22 o

1312200 918540 13122 ° 2187
200 l>+n_7/2ﬁ< 17 H12+ 613 H'lo

2187 14171760 82668600
851 2789 362 80 88 )
— H,— H,— H,— H,
918540 ° 196830 © 6561 ' 2187 1 5561
» 1 241 g 25961
R (204073344 7212576400 ' 496011600
14171 13871 o 1409 o 11578 o

~'37200870 2361960 19683 59049

2240 _m}
+ 19683 H‘>+O(” ) -

The finite sums of (4.1) up to terms of order n~™" are referred to FX(x)
(m=1,2,---,8) in this example. The notation F¥(x) are similarly used
as the finite sums of (4.2). In comparison with (4.1), it should be
noticed that the Hermite polynomials in (4.2) have coefficients smaller
in magnitude with them in addition of being of lower order.

Even for n=2, the formula based on F{(x) (formula (4.2) omitted
the terms of order %" or higher) closely approximates the exact dis-
tribution function

Prg<z]=F*a)=1—e"

having errors less than 0.001 for 2=0.01. The approximation errors
CX)=FX(X,)—F*(x3) and ChL(p)=Fx(Yy)—F%(y;) for <10 and m=1,
2,4, 6,8 are shown in Fig. 2(a) and Fig. 2 (b), respectively (Note that
the vertical scales differ each other). We can see from Fig. 2(a) that
the formulae for larger m give better fits in the neighbourhood of p=2,
however, suffer from oscillation phenomena and give much poorer fits
in the right tail (note that «;,/4/» =2 in this case). It should be also
noted that the shape of oscillations resembles the right half of the cor-
responding oscillations in Fig. 1, which may endorse our inference about
the source of the tail difficulty. In contrast, free from oscillation, the
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—0.40) Xz=2 _
(a) Standardized variate : CX(Xx3) (m=1,2,4,6,8).
0.02
crxd)

—0.01

—0.02  X3=2
(b) Transformed variate : CY(x%) (m=1,2,4,6,8)

Fig. 2. Errors of approximations to the % distribution.

approximate formulae based on transformed variate (see Fig. 2 (b)) be-
come more accurate as the order m increases.

Example 2. Let r be the sample correlation coefficient based on
a sample of size n+1 drawn from a bivariate normal distribution with
population correlation p. It is known that the limiting distribution of

X,= v (r—op)
1—p?
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is the standard normal distribution. Since the term «;; is —6p, it follows
from (3.1) that the transformation is required to satisfy the equation

(1=0)1"(0)—20f"(p)=0 .
The solution of the above differential equation with respect to p is
1+4p

f(p)=z<p)=% log 112

0.025 --
Culr)

—0.025
(a) Standardized variate: CX(+) (m=1,2,4,6,8)

0.025)
Culr)

fl=m= = mmm e S

)

T

—0.025
(b) Transformed variate : Crl(r) (m=1,2,3,",8)
Fig. 3. Errors of approximations to the distribution of the sample
correlation coefficient (sample size n+1=11 and population cor-
relation coefficient p=0.8).
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the 2-transformation due to Fisher [2]. Since f’(x)=1/(1—=?%, the vari-
ate transformed in order to make 2;,=0 is given by

Y. = \/ n {f(’) f(P)} —
= n {z(r)—z .

Concerning the distribution of the sample correlation coefficient 7,
an asymptotic expansion up to the terms of order n~* for the distribu-
tion of the transformed variate Y, was given in Niki and Konishi [8].
The corresponding expansion for the distribution of X, is much more
complicated to be presented and omitted here. The similar notation
FX(x) and FY(x) (m=1,2,---,8) are used for the finite sums of the
above expansions as in Example 1, and the exact distribution function
of r is referred to F*(r).

The approximation errors Ci(r)=FZ(X,)—F*(r) are shown in Fig.
8 (a) for n=10 (sample size=11) and p=0.8 (ks /v n = —4.8/4/10 = —1.52).
The oscillation phenomena are remarkable also in this case. Note that
the shape of the oscillations for each m (m=4, 6, 8) is very similar to
the corresponding oscillations in Fig. 2(a). On the other hand graphs
of the approximation errors C}(r)=F%(Yy)— F%(r) in Fig. 3 (b) are much
simpler than those in Fig. 3(a). The highest order formula FZ(Y)
yields highly accurate values with

Max C¥(r)<8x10-t.

7=—0.995(0. 005)0. 995
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