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Summary

This paper investigates some partially balanced fractional 2™*m:
factorial designs of resolution IV derived from partially balanced ar-
rays, which permit estimation of the general mean, all main effects,
all two-factor interactions within each set of the m, factors (k=1, 2)
and some linear combinations of the two-factor interactions between
the sets of the m, ones. In addition, optimal designs with respect to
the generalized trace criterion defined by Shirakura (1976, Ann. Statist.,
4, 723-735) are presented for each pair (m,, m,) with 2<m,<m, and
m,+m,<6, and for values of N (the number of observations) in a rea-
sonable range.

1. Introduction

As a special case of an asymmetrical balanced array of type 2 de-
fined by Nishii [7], a partially balanced array (PB-array) has been stud-
ied by Kuwada [3]. Necessary and sufficient conditions for the exist-
ence of a PB-array have been obtained by Kuwada and Kuriki [4].
A-optimal partially balanced fractional 2™*™: factorial (2™+™:-PBFF) de-
signs of resolution V derived from PB-arrays have been obtained by
Kuwada [3].

In this paper, we consider the situation in which the three-factor
and higher order interactions are assumed to be negligible, the set of
the factors is divided into two disjoint sets (m, factors and m, ones,
say), and furthermore the two-factor interactions between the sets of
the m, factors (k=1, 2) are not of immediate interest from the point
of view of estimation, etc., but they are possibly not negligible. In
this situation, we study a fractional 2™*™ factorial design derived from
a PB-array such that the general mean, all main effects, all two-factor
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interactions within each set of the m, factors (k=1, 2) and some linear
combinations of the two-factor interactions between the sets of the m,
factors are estimable, and that the covariance matrix of these esti-
mates is invariant under any permutation on the m, factors for each
k. Such a design is called a 2™*™-PBFF design of resolution IV.

For earlier works on a design of even resolution, see for example,
Kuwada [2], Margolin [5], [6], Shirakura [8]-[11], Srivastava and/or
Anderson [1], [13] and Webb [14]. Especially, by use of the properties
of the triangular multidimensional partially balanced (TMDPB) associa-
tion algebra, it was shown in [8] that under some conditions, a balanced
array with g,=0 yields a balanced fractional 2™ factorial design of re-
solution 2! such that all effects up to the (!—1)-factor interactions and
some linear combinations of the Il-factor interactions are estimable.

For the reader’s convenience, we shall recall the definition of a
PB-array here: A (0, 1) matrix [T’; T®] of size NX(m;+m,), in which
T® (k=1, 2) are of size Nxm,, is called a PB-array of strength &,+%,
size N, m;+m, constraints, 2 levels and index set {p(¢y, %;)|0=1.=¢8),
written PBA (N, m,+m,, 2, t,+t,, {¢(iy, 3,)}) for brevity, if for fixed val-
ues of t,, every submatrix [T®; T{®] of size NX(t,+t,) is such that
every (0,1) vector with weight 7, in T occurs exactly p(i, i,) times
as a row of [T®; T], where T§® are of size Nxt, and are composed
of t, columns of T®, and the weight of a (0, 1) vector means the num-
ber of ones in the vector.

2. Preliminaries

Consider a factorial experiment with m,+m, factors each at two
levels (0 and 1, say), where m,=2 for k=1,2. Further consider the
gituation in which the three-factor and higher order interactions are
assumed to be negligible. The vector of unknown effects is then given
by ({6(0; 0)}; {8(u; 0)}; {6(0; v)}; {8(uus; 0)}; {6(0; vivy)}; {O(u; v)}) (=6,
say), where 1um,, 1Svm,, 1S, <u,<m, and 159, <v,<m,. Here
A’ denotes the transpose of a matrix A. Let [T®; T®] (=T, say) be
a fraction with N assemblies, then T can be expressed as a (0, 1) ma-
trix of size Nx(m;+m;) whose rows denote the assemblies. The vector
of N observations based on T can be expressed as

YT)=E;0+e; ,

where E, is the Nxv design matrix whose elements are either 1 or
—1 and e, is the error vector whose components are assumed to be
uncorrelated each having mean zero and same variance ¢°. Here v=

1+(m1+m2)+<m‘;mz> and ¢ is a constant which may or may not be
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known, where <5> denotes the binomial coefficient. As a special case,

(5):0 if and only if p<q or ¢<0. The normal equation for estimat-

ing 6 can be expressed as
@2.1) M,6=E;y(T),

where M, =E}E, (vXv) being called the information matrix.
Now let S(a@)={0(u;- - g s vy - V) [ 1SUs <0+ - <Up =My, 159K

e+ <, =m;}. Then ]S(a1a2)|=<"l:‘> (ZL:>, where |S| denotes the cardi-

nality of a set S. Suppose a relation of association is defined among
the sets of effects in such a way that 6(u;- - s ; v1- - -va,) € S(a:a) and
O(ui- - -wp ; v+ - ;) € S(bby) are the (ea,)-th associates if

l{uly' Yy u"'l} n {u{y * %y u{tl}I:min (al’ bl)—al
and
l{vly ] vaz} N {’U{,‘ Yy 1),’,2}|=min (a2l b2)—a2 ’

where min (a, b) denotes the minimum value of integers a and b. The
scheme thus defined is called an extended TMDPB (ETMDPB) associa-
tion scheme (see [3]), and it can be regarded as a generalization of the
TMDPB association scheme (e.g., Yamamoto, Shirakura and Kuwada
[15], [16]). For the ETMDPB association scheme, we shall use the same
matrix notations, D{1*?, ALr*? and DE“r"’? as in [3], where 0=
a,+a; b+b,<2. The reader, therefore, is referred to the paper men-
tioned above for the properties of these matrices used here.
Let T be a PBA (N, m,+my, 2, t,+1,, {#(, 1;)}), where

m, if m,=2,3,
2.2) te=
4 if m,=24.

In this paper, we shall consider only a PB-array with (2.2). Then the
information matrix M, can be expressed as
M=% >3 Tlal—b1|+2a],Ia,—b,l+2a2D§a1£:2'blb2) ,
a8y bydg ajay

where 3 and 3} stand for the summations over a,a;, bb,=00, 10, 01, 20

a,a. b0
(if mlgzli)z, 02 (ilf m;=4), 11, and a connection between 7, , and indices
¢(iy, 1) of a PB-array is given by
_ ty g 2 Jie 1y jk tk—jk L.
(2.3) Taen= 2 2 [TT {2 =1 k<pk><ik—jk+pk>}:|#(%’ w -

=0 iy=0 Lk=1 {p=0

Let A, =[D¥4v"|0<a,+a,52, 0Sb,+b,52] for 8,8,=00, 10, 01,
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20 (if m,=4), 02 (if m,=4), 11. Then J;,, are two-sided ideals of the
ETMDPB association algebra ./ generated by the linear closure of all
D™ and also generated by the linear closure of all Df3*"’?. For
T being a PB-array, let K, , be the irreducible matrix representations
of M, with respect to i,,, where K, =|k;57""|. In this case, we
denote them by M,;~Kj;,, for 8,8,=00, 10, 01, 20 (if m,=4), 02 (if m,=
4), 11. A connection between the elements k,3?""? of K,, and the
values 7, ; is given by

b0y *(ay 0y
(2.4) Kppl V1= 3] [T[ E }]rial—b1l+2a1,la2—bgl+2az )

where for 0<a<b<m, and 0=, B<min {min (a, m —a), min (b,m —b)},

vanish if (I) m=2 (i) (a,0)=(1, 2)
(1) a=0, p=1,
(2) a=1, g=0,1,
(ii) (a, b)=(2, 2)

(1) a=0, ﬁ: ) 2,
(2) ¢2=1, 2, [9—_—0, 1, 2,
*(a,b) (II) m:?’! (a/y b) (2 2)
Zha =N _
(1) a=0,1, p=2,
(2) e=2, §=0,1, 2,

S1(—1)> <a;ﬂ><g:£>(m_a; B+p) m—a—p\(b—B)) "
- (b—f;’+p) {< b—a ><b—a>}

otherwise .

3. 2m*m-PBFF designs of resolution IV

A fraction T is called a 2™+*™-PBFF design of resolution IV when
the vector of unknown effects ({6(u; 0)}; {6(0;v)}) (=6}, say) is estim-
able and the covariance matrix, Var [éol, say, of the BLUE 6, of 6, is
invariant under any permutation on the m, factors for each k=1, 2.
Consider the vector @ of unknown effects partitioned into (8}; 8}), where
81=({6(0; 0)}; {6(u; 0)}; {6(0; v)}; {O(msus; 0)}; {6(0; vw,)}) and 6;=({6(u;
v)}). Then if @, is estimable and Var[6,] is invariant under any per-
mutation on the m, factors, T is of course a 2m*™:-PBFF design of re-
solution IV, which is treated here.

Now, we shall consider a PB-array T satisfying the following con-
ditions:

(3.1)  det(K,,)#0 for 8,8=00, 10,01, 20 (if m,=4),
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02 (if m,=4) and det (K,;)=0,

where det (A) denotes the determinant of a matrix A.

LEMMA 3.1. For T being a PBA (N, m+my, 2, t;+1t;, {p(i, 12)}),
det (K;,)=0, t.e., k?"=0, yields p(i, 1,)=0 for 1=1,=<t,—1 (k=1, 2).

PrOOF. From (2.3), (2.4) and Vandermonde convolution formula, it
follows that

ICH’H"—‘N—To,z—Tz,o+Tz,2=16 212 (2:%) <f;z:%>”(i“ '1:2) *

Y

Since the values @:%) <i::%> are positive integers for 1=1,<t,—1 (k

=1, 2) and (4, %,) are non-negative, k=0 yields (%, 1;)=0 for 1=4,
<t.,—1. This completes the proof.

Let C be a matrix of order v such that
C=diag[IL.; Hle A,
where I, denotes the unit matrix of order p. Here
v¥ =y —mymy= {2+ m,+m,+(m,)* +(my)*}/2
and
H=ho A"+ hy A0+ by A

where h,, (88:=00, 10, 01) are real constants. Then it holds that C~
I, ,, for p,8,=00, 10,01, 20 (if m,=4), 02 (if m,=4), where

I'y=diag [Is? hyl »
{ diag [1; hy) if m,=2,
| disg [B; el if m23,

3.2)
{ diag [1; Ao if m,=2,
" diag [I;; hul if m;=3,
vanish if m,=2,3,
Tu= ,
[1] if m;=4
and

{ vanish if m,=2, 3,
[1] if my=4.
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LEMMA 3.2. Let T be a PBA (N, m+my, 2, t,+1t,, {u(i, t,)}) satisfy-
ing the condition (3.1). Then there exists a matrix X of order v such
that XM,=C and X € A.

ProOOF. Let y,,,=1%,K;;, and consider a matrix X such that X~
Xss, TOr Bi:=00,10, 01,20 (if m,=4), 02 (if m,=4), where I, are
given by (3.2). Then since My ~K,,, we have XM,=C and X e J.

THEOREM 3.1. For T being an array of Lemma 3.2, a parametric

Sunction
reos=[] (<[] )

is an estimable function of 6. The BLUE ¥ of ¥ is given by ¥'=XEy(T),
where X 1is the matrix given in Lemma 3.2.

PROOF. From Lemma 3.2 and E[y(T)]|=E.0, it holds that E[¥]=
XE; EY(T)=XE{E,0=XM,0=CO=¥, where E stands for an expect-
ed value. Also it follows from the Gauss-Markoff Theorem that the
BLUE ¥ of ¥ is uniquely given by #=C6, where 6 is a solution of

(2.1). It, therefore, holds that &=XM,6=XELy(T).

Note that for T being an array of Lemma 3.2, Var [y(T)]=d*I,
and XM,=C yield Var [¥]=*XC.
Let

(3.3) X,=diag [Xy1; O m,]
1My
=33 Kg.(;az,blszggalarblbz)'}' I K:t‘iuz,vlsz’(()uluz'vl'%)

@,a9 b1b, Uty V10
33 50 Ky e DU+ 13 DR+ 3 DI
W1We 5152

where (i) when m,, m,=2, 3, £, and k., vanish, (ii) when m,;=4 and
my=2, 3, k3 vanishes, and (iii) when m,=2, 3 and m,=4, k3, vanishes.
Here X,, is the v*Xxv* submatrix of X, 0, denotes the matrix of order
» whose elements are all zero, and k{12, , are the (a,a, bb,)-th ele-
ments of K;;. Then we have

Var [éI] =X,
(3.4) A
Var [8]=0"(3] (b, 01455™}
1F2

where 3> stands for 8,8,=00, 10, 01. Since X, belongs to i, the fol-

ﬁlﬂz
lowing is immediately established :

THEOREM 3.2. For T being an array of Lemma 3.2, T is a 2™+™-
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PBFF design of resolution IV such that Var [é,] 18 tnvariant under any
permutation on each set of the m, factors, and that A¥;:'"8, (8,8,=00,
10, 01) are estimable.

To illustrate the usefulness of the results in this paper, we present
an example here.

Example. Let
0/00010/10i11
0000010111
T/ = | oo
0101001110
0011001101

Then T is a PBA (10, 2+2, 2, 242, {¢(0, 0)=1, £(0, 1)=1, £(0, 2)=1, p(1,
0)=1, p(1, 1)=0, u(1,2)=1, u(2, 0)=0, x(2, 1)=1, x(2, 2)=0}), and det (Ky)
=262144, det (K,;)=det (K,))=128 and det (K;;)=0. From Theorem 3.2,
the vectors 8/=(6(0; 0), 6(1; 0), 6(2; 0), 6(0; 1), 6(0; 2), 6(12; 0), 6(0; 12)),
A0, ie., {6(1;1)+0(1;2)—6(2;1)—0(2; 2)}/4, and A¥108,, i.e., {6(1;
1)—60(1;2)+6(2;1)—0(2; 2)}/4, are estimable. Note that there do not
exist the matrices K, and K, since m,=m,=2.

4. GT-optimal 2™+™-PBFF designs of resolution IV

Consider a 2™*™-PBFF design T of resolution IV with N assem-
blies. Then since for N=v, there exist 2™m*+":-PBFF designs of resolu-
tion V (e.g., [3]), we consider the only case in which v**< N<y, where
v¥¥ =p¥ 4 1+ i+ P = {3(my+my) + (M) +(m,)'}/2, where

(4.1) =11 {(5)~(s7x0)} -

For choosing a design which allows the estimates of at least m,+
m, main effects and further maximizes the amount of the information
in some sense, we shall consider the sum of the variances of the esti-
mate é, and the (1+¢,+¢y) normalized independent parameters in
A58, for B,5,=00, 10, 01. Let &%= {(mm,)/¢,,} " AK3:"0, for B,8,=
00,10,01. Then ¥*% are normalized parametric functions of 8,. It
follows from (3.4) that every element in the BLUEs @2 of A% has
the same variance o’{3{2. Thus the following yields:

THEOREM 4.1. For T being a 2™*™-PBF'F design of resolution IV
derived from a PBA (N, m+m,, 2, t;+ts, {¢(is, 1,)}) satisfying (3.1), the
sum of the variances of v* BLUES of the effects in 6, and mormalized
independent parameters in T i3 given by o’S,, where
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tr (Kg")+ ¢ tr (Kio")+¢u tr (Ki) if my, my=2,3,
tr (Koal)+¢1o tr (K131)+¢01 tr (K0T1)+¢20 tr (Kﬁ‘)
if m1;4, m2=21 3 ’
Sr={ tr (Kw")+ ¢ tr (Kig") + o tr (Ko')+ e tr (Kz')
7/f m1:2: 3’ ng4 ’
tr (Kw')+ ¢ tr (Ki5') + o tr (Koii') +éo tr (Ki')+ o tr (Kiz?)
if my, my=4,

where tr (A) denotes the trace of a matrix A and ¢, are given by (4.1).

For T, and T, being two 2™*™-PBFF designs of resolution IV de-
rived respectively from a PBA (N, m;+my, 2, t;+1t, {¢(3, 1)) and a
PBA (N, m+my, 2, t,+t,, {¢*(4y, 1,)}) satisfying (3.1), T, is said to be
better than T, if S; <S;,. Such a criterion is called the generalized
trace (GT) criterion, which was defined by Shirakura [8].

Table 1. GT-optimal 22+2.PBFF Table 2. GT-optimal 22+3-PBFF
designs (10 N<11) designs (14<N<16)
N ] Sr N ©m Sr
10 111101010 1.43750 14 non-exist
110101110 15 110110010110 1.57060
Table 3. GT-optimal 22+4-PBFF designs Table 4. GT-optimal 23+3-PBFF designs
(195N<22) (18=N<22)
N o Sr N @ Sy
19 010101000110100 2.12500 18 non-exist
20 101011000101010 1.25000 19 0110000110011100  2.42411
21 201011000101010 1.19167 20 1111100010010100  1.81826
101011000111010 1110100110001010

21 1111100010011100 1.67239
1111100110001010

For [T®; T®] (=T, say) being a PBA (N, m;+m,, 2, t,+1t,, {(¢y, 15)}),
let T,=[T®; T®], T,=[T®; T®] and T=[T®; T®], where T®=Gy.m,
—T% and G,,, denotes the pxq matrix with unit elements everywhere.
Then T,, T, and T are also PB-arrays with index sets {u(t,—1,15)},
{p(iy, t,—1,)} and {p(t,—1,, t,—1;)}, respectively. If T is a PB-array satis-
fying (8.1), then it holds that S;=8S; =S7,=S7 (e.g., Shirakura and
Kuwada [12]).

In Tables 1, 2, 3 and 4, GT-optimal 2*+%-, 2!*3., 2!*4. and 2***-PBFF
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designs of resolution IV derived from PB-arrays satisfying (3.1) are
respectively given together with the values of S; and the indices p(;,
1,) of a PB-array. Note that in each table, gx=(p(0, 0)x(0, 1)--- (0, t,)
#(1, 0)- - - u(ty, t;)), where t, are given by (2.2).
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