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Summary

The present paper obtains necessary and sufficient conditions for
factorial orthogonality in the presence of covariates. In particular,
when interactions are absent, combinatorial characterizations of the
conditions, as natural generalizations of the well-known equal and pro-
portional frequency criteria, have been derived.

1. Introduction

In a multifactor set up, the problem of orthogonality has been
considered by a number of researchers. For a factorial experiments in
a completely randomized design, Seber [13] derived conditions for or-
thogonality. In the contexts of factorial block designs and fractional
plans, conditions for orthogonality have been obtained among others
by Chakravarti [2], Kurkjian and Zelen [7], Addelman [1], Kshirsagar
[6], Cotter, John and Smith [4], Lewis and John [9], Kuwada and Nishii
[8], Mukerjee [10], [11]. Recently, the problem has been considered by
Rao and Yanai [12] and also Takeuchi, Yanai and Mukerjee [14] using
projection operators.

The present paper considers the problem of factorial orthogonality
in the presence of covariates. The problem is of practical importance
and for real-life examples of factorial experimentation incorporating co-
variates, from the fields of industry and biometry, one may see Wishart
[15], Cochran and Cox ([3], 176-180) and Cox ([5], 259-260) among others.
Under a situation where the level combinations are arranged in a com-
pletely randomized design and there are p covariates, two cases are
considered in this paper. First the regression coefficients are allowed
to vary over the level combinations and a combinatorial characteriza-
tion for factorial orthogonality is derived. Next, the situation where
the regression coefficients are the same for all level combinations is
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also taken care of.

2. Notations and preliminaries

Suppose that there are m factors Fi,-.., F, at s,---,s, levels re-
spectively. Let Y denote the study variate and suppose that there are

m
nonstochastic covariates x2©,..., 2, There are v=T[ s; level com-
Jj=1 I

binations of the m factors and a typical level combination will be de-
noted by 1=(3,- -+, %n), 0=9;<8,—1; 1<j<m. Hereafter, the level com-
binations will be assumed to be lexicographically ordered (cf. Kurkjian
and Zelen [T7]).

With the level combinations arranged in a completely randomized
design, suppose that the i-th level combination is applied n; times and

denote the corresponding observational vector by Y,=(Yy,---, Yi).
Further, let the corresponding values of the w-th covariate be, say,
x{=(x{”, -+, 27)', 1=w=p). Then, allowing regression coeflicients

to vary over level combinations, one may take the linear model,
@1)  E(Y)=g+3 reaP+c, 1<jsn, and 1<isv,
w=1

where r; is the effect due to ¢-th level combination, and the random
variables Y;; are homoscedastic and uncorrelated. Here, 7, 1Sw=p,
1<i<v) is the regression coefficient of Y on «“’ in the presence of the
i-th level combination. Define the covariate matrix as X®P=(x{,

<++, XP), a matrix of order n,xp, for i1=1,-..,v. Further, we define
b'd 0 1,, 0
D = X, . and GV = L, |
0 "X, 0 - 1,
Where 1,,=(1,1,---, 1)’ is the n, dimensional vector with unit elements,

and n=n,+---+n, Then the linear model (2.1) can be expressed in
matrix notation as

(2.2) E(Y)=pl,+Dyy+Gr=28

where Z=(1,, Dy, G) is the design matrix and B=(g, 7/, ')’ is the pa-
rameters, and g is the general mean, t=(zy,- -, 7,)', 7&P=(r1s*" ", Tp)
and T(WX1)=(T{’ con, Tt,:)’-

Further, we may assume V(Y )=g¢%I, where I, is the identity matrix
of order n.

Thus, the coefficient matrix of normal equation for 8 follows as



FACTORIAL ORTHOGONALITY IN THE PRESENCE OF COVARIATES 333

n 11’le n'
Z'Z=|Dil, DiDy W’)
n W D,
M 0 n, 1, X, 0
Where Dn: Ty . , = 1?2 and W(uxpv)z :

0 "n, n, 0 X,
It is reasonable to assume that the design is such that for each 4,
writing a;=p+r,, from ¥;=(Yy, -, Y,,) alone a; should be estimable.
This will happen when

(2.3) rank (X, 1,)=rank (X))+1

which implies that X.d;#1, for any vector d;,. It should be noted,
however, that (2.3) does not imply that the vectors of covariate x{,
<o, X are linearly independent.

Let V=(1,, Dy)'(1,, Dy). Then the reduced normal equations for =
are seen to have the coefficient matrix

(2.4) C=G'G—G'(1,, Dy)[(1,, Dx)(1,, Dx)]"(1,, Dx)'G
=D,—(n, W)V -(n, W)

where V- is any generalized inverse matrix of V. Put H=(1,, Dy).
Then using the Theorem 5 of Rao and Yanai [12], we have

2.5) H(H'H) H'=Py+ Py _x

where Py=1,1//n, Qy=1I,— Py and Py ,y=QyDs(D:QyDy)D;Qy are the
orthogonal projectors onto the subspaces S(1,), S(1,)* and S(QyDy) re-
spectively (see Takeuchi, Yanai and Mukherjee [14]).

Substituting (2.5) into (2.4), we have

C= G’G— G’(PM"I‘ pr/y)Gz G'QMG— G,PDX/MG
=G'Qx(I,— Pp X/M)QHG

in view of the result Pp yQu=QuPpo,u=Ps,u Because of (2.3),
S(QxD;) and S(QyG) are disjoint. Thus, we have

(2.6) rank (C)=rank (@,&)=rank (G)—1=v—-1.

The result shows that all contrasts of the level combination effects are
estimable, and it is easy to see that the matrix C have all row and
column sum zero, since

Q.G1,=(1,—-1,1)/n)G1,=1,—1,(1,G1,)/n=0 .
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To simplify the expression (2.4) for C, further note that

@2.7) HHH)yH=P, +P,»,
where P, 5, =Qp 1.(1:Q,1,)"'1\Qs,, Q»,=1,— P, and
Py, 0
Po,=D(DiDy) Dj=|  Pr. , (Pr,=X(X]X)X]).
0 Py,
Substitution of (2.7) into (2.4) yields
(2.8) C=G'G—G'(Pp,+P, ;p,)G
=(@'G—-G'P,,6)—G'Qr,1,1:Q5,1,)'1:Q», G
=D.—&§'|f
where

f='n_iv§¢i1 €=($1,°", Ev)" $t=ni_¢t!

2.9)
é= I:L,iPXilﬂi = I:LiXi(XiIX‘i)—'Xillni

3 0
De:( | . . ) ’
0 g,

Further, because of the relationship (2.3), we note

(2.10) ¢=n—p=1,1, 1, Pr1,=1,Qx1,>0.

and

3. Condition for orthogonality

For 1=j<m, let us define E,=1,1;, and let P; be an (s;,—1)Xs,
matrix such that (s;'’1,, P;) is orthogonal. Let 2 denote the class of
m component nonnull vectors with elements 0 or 1. Then for any a=
(@, -, a,) € 2, writing

P =PhQ@ P Q-+ Q Pun
where ® denotes Kronecker product and for 1<j=<m,
s;"zlf,j , if a,=0

P}’J:j
Pj, if a_,=1,

one can check that P°r represents a complete set of orthonormal con-
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trasts belonging to the factorial effect Fu- - . Fi¢n (cf. Kurkjian and Zelen
[7], Mukerjee [10]). Denoting by P°#, i.e., the best linear unbiased
estimator of P°r, the design will satisfy factorial orthogonality if for
every a,be 2 (a+b),

Cov (P°t, P*t)=0 .

Following Mukerjee ([10], [11]), one gets a necessary and sufficient
condition for the above stated below.

THEOREM 3.1. The design satisfies factorial orthogonality if and
only if for each a,be 2, a+b, P*C(P*) =0.

It is possible to give a combinatorial characterization of this neces-
sary and sufficient condition. Thus, following precisely the steps in
Mukerjee [11], if one interprets

PC(P*)Y=0

element by element for each a, b(a+#b) € 2, then one derives an equiv-
alent form of Theorem 3.1 as stated below.

THEOREM 3.2. The destgn satisfies factorial orthogomality if and
only if

§i=n—¢;=n,—1;, X(X/X,)"X/1,,
18 constant over ¢ (1<1=50).

The above condition can be anticipated from indirect consideration
as well. In the conventional set-up with no covariate, the reduced
normal equations for r has the coefficient matrix

3.1) DF¥=D,—nn'In

and a necessary and sufficient condition for factorial orthogonality is
given by the standard equal frequency criterion (Mukerjee [11]) where
n; is constant over 4 (1=<i¢<wv). The reduced normal equation in the
present set-up has the coefficient matrix C, which, by (2.8), can be
obtained from (3.1) by replacing n;, by & (1=i<v). It is, therefore,
only natural that the necessary and sufficient condition for factorial
orthogonality will also be given by an “equal frequency-type” criterion
in terms of &,’s. This is precisely given by Theorem 3.2.

In the conventional set-up where covariates are not taken into ac-
count, Seber [13] derives a necessary and sufficient condition for fac-
torial orthogonality in terms of the proportional frequency criterion.
Unlike our definition, his definition of contrasts belonging to factorial
effects involves the replication numbers »,’s and is, therefore, different
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from ours.

While Theorem 3.2 generalizes the equal frequency criterion for
orthogonality to the present set-up, it is also possible to generalize the
proportional frequency criterion considering a particular situation de-
scribed below.

Suppose prior knowledge is available regarding the absence of fac-
torial interactions. Thus, if £* be the subset of £ comprising the
multiples with at least two variates, one gets

3.2) Pz=0, for any a € 2*.

Clearly, then interest lies in the estimation of only the factorial
main effects; i.e., P for a € (2—2)*, i.e.; v*=Pr where P'=(P""",

POty L P00 - [Under (3.2) together with ﬁ‘, 7;=0, if one pro-
i=1

ceeds as in Mukerjee [11] to derive the normal equations, then after
some simplification, the coefficient matrix of the reduced normal equa-
tions for * can be obtained simply as PCP’ where C is as defined in
(2.8).

The following analogue of Theorem 3.1 is evident.

THEOREM 3.3. In the absence of factorial interactions, the design
satisfies factorial orthogonality if and only if for each a and b€ 2—2%,
a#b, P*C(P*)=0

To derive a combinatorial characterization of Theorem 3.3, recall
that a typical level combination is denoted by ¢=(i;,---, i,). Hence
writing §,=¢, ..., , define for 1<j<m, 0=<1%,<s,—1,

-1 8j_1-18541-1 8p—1

EP=>- 3 3 .- 20 ity 14t

=0 1j1=0 4j4,=0 ip=

i.e. § represents the marginal total obtained by summing &, .., over
all sufﬁxes other than 4,. In a similar fashion, for 1< J<kSm, 01,
<s,—1 (I=4, k), the marginal total £ may be defined by summing
ity over all suffixes other than ¢, and ¢,. For example, if m=3,

-1
then 65‘3’—2 £,.:. and so on. Similarly, interpreting ¢, and n, as ¢
1“3 =0 1°2°3

=y ..t and n=mny.., , define the marginal totals ¢{”, nf’ (1=j=m,
OSz,Ss,—l) and ¢§’ ) nij’,’” (1gj<ksm, 0<4,<s,—1, l=j,k). Clearly
it follows that

(3.3) 6(1)-—1",(!) ¢(!)
3.9) EUD =g — P .

Then again as in Mukerjee [11] if one interprets P°C(P’)'=0 ele-
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ment by element for each a, b (a#b) € 2—2*, the following equivalent
form of Theorem 3.3 is obtained.

THEOREM 3.4. In the absence of factorial interactions the design
satisfies factorial orthogomality if and only if for every 1=<j<k=m
and 0=4,<8,—1 (I=7, k), the relation

(3.5) B =E1EDED
where §=20 Syt holds.

The above is just a generalization of the standard proportional fre-
quency criterion for factorial orthogonality in the conventional set-up
(where covariates are not taken into account) under the absence of
interactions (see, e.g., Addelman [1] and Mukerjee [11]). It may be
noted, in this connection, that in the conventional setting the propor-
tional frequency criterion is stated in terms of =, ... 's, which, in view
of (2.8) and (3.1), are replaced by &; .., 's in the present set-up.

4. Some allied results

In the above development the regression coefficients of Y on the
covariates vary over the level combinations. Suppose now such varia-
tions are not allowed and the regression coefficients, say 7,:--, v, are
the same for all level combinations. The notations, unless otherwise
stated, remain the same as before.

Then defining,

n

FW=p-1 é j:l ng), PR B LI Ol Y
where w=1,---, p,
7*=(71,--*, 1),  a vector of order p,
X=[x*—-z%1,,---, x?—-7Z?1,], a matrix of order nxp,

one can take the linear model

(4.1) E(Y)=pl,+ Xr*+Gr=2Z*8* and V(Y)=d'l,

where Z*(1,, X, G) and B*=[g, (#*), (r)'). As before, the standard
restriction é 7,=0 is there.

Then the coefficient matrix of normal equation for g* is easily seen
to be
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n 0 n'
(Z%(Z%)=|0 X'X U
n U D,

i
where U =G'X=[(4:1,)], % =0,(T°—F’) and z=mn;! ,E W (1=
=1

<10, 1Swsp).
Now, for estimating all contrasts of 7, it is necessary and suffi-
cient that

(4.3) rank (X, G)=rank (X)+v.

Thus, the reduced normal equations for = may be seen to have the
coefficient matrix

C*=G'G—-G(1,, X)[(1., X)1, X)] (1, X)G
=G'G—G'(Py+QuX(X'QyX)" X'Qu)G
—6G'QG—GCX(X'X) X'G
=D,—n'nn'-UX'X)" U,

in view of @,X=X and using the decomposition theorem of the orthog-
onal projector. Observe that the matrix C* has rank v—1 and, as
usual, all row and column sums zero.

Then, analogously to Theorem 3.1, in the general setting with no
assumption regarding the absence of interactions it follows that the
design satisfies factorial orthogonality if and only if for each a, b€ 2,
a#b, P°C*(P?)=0. The matrix C* is somewhat complicated and even
if one follows the lines of the earlier researchers, a combinatorial
characterization of this condition cannot be obtained in general. For
example, if as in Mukerjee [11] one tries to interpret this condition
element by element for each a,be 2 (a+b), the resulting expressions
will involve the covariates in a manner too complex to comprehend,
thus defeating the very purpose of further reduction.

If, however, prior knowledge is available regarding the absence of
factorial interactions, one can obtain a combinatorial characterization.
In that case, analogously to Theorem 8.3, it is seen that the design
satisfies factorial orthogonality if and only if for each a, b € 2—2%, a+b,

(4.4) PC*(P?) =0 .

While deriving a combinatorial characterization of (4.4), first for
the sake of notational simplicity the case m=2 will be taken up, al-
though the approach is quite general and can be easily extended to
the case with any number of m.

With m=2, recall that a typical level combination is t=(4,, ;) and
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it is replicated n,=mn,,, times. For 0<1,<s,—1 (=1, 2), define

39—1 8 -1
.= ¢22=o Ty, and .= i12=0 Ny,

(note that with the notations of the preceeding section, m,. and =.,
are the same as n{® and n{¥ respectively). Also we can write Y as
w6y ASJ=n0,,) for each w, since ©=(i;, ;). Similarly, z{*> may be
written as 7{%3). Define for 04,58, —1

8g—1
wS;”.’=%2=}o Ny 3 TOD My l1=w=p

as the mean of z™ from all experimental units receiving the level 4,
of the first factor. Similarly, define for 0=<1,<s,—1,

-1

55:::):120 nilizigﬁi/n.tz ) 1§W§p .
1=

Now, the condition (4.4) with m=2, a=(1, 0) and b=(0, 1) yields
(4.5) (P ®1)C*1, Q P))=0.
By definition, it follows that
PJ,P1=I:,_SJ—1E! 7=12).

On pre and postmultiplication of (4.5) by P/ and P, respectively, one
gets

(L, —sTE)@1L,]CH1, @ (L, — s Ep] =0 ,
whence, recalling that C* has all row and column sums zero,
(1, ®1;)C*(1,, ® L,)=0,
ie., by (4.2),

(4.6) (I, ®1,)D,1,® L,)
=(L,QL)[n"'nn'+ UX'X)"U'1(1,,®L,) -

Each side of (4.6) is an s, xs, matrix. For 0=1,<s,—1 (j=1,2), the
(44, i)-th element of the left hand side of (4.6) can be seen to be n, .
Similarly, the (i, %,)-th element of

(I, ®1)(n"'nn") (1, Q@ L,)
is n7'ny.m.,,. Also observe that

(L, ®1;) U=(L, ®1;)G'X
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N (TP —TY) Ny (TP —TP) -+« Ny (TP —TP)
=| n,.@ZP—zP) 7. (ZP—FP) . . . nl‘(igy)_a—c(p))
N (P —TP) 1, (BP—ZP) - - - 0, (TP —FP)

where t=s,—1 and a similar expression may be obtained for UQ1,®1L).
Hence, if one writes T=n"'X'X and T-=[(t*?)] for any generalized
inverse matrix of T, one gets, after some simplification, that (i,, 4,)-th
element of

(L,®1)[UX'X)" U1, QL)

as
» P
oy 3 S EER—T) @~ E)
Thus (4.6) yields
Y4 Y4 _ _ _ _
4.7 nﬁ,z:n“n,l.n.iz[l—{—wg‘.l qg_l t(zH — "‘”)(xf‘lg—x‘“’)]

where 0=<%,=(s;—1), 7=1,2. Since the above steps are reversible, (4.7)
is not only a necessary but also a sufficient condition for orthogonality
for m=2 under the absence of interactions. Observe that Miy, =Ny My,
follows if z{?=7z" holds for w=1,2,.--, p.

To extend the above result to general m, define 7P (1=sj=m, 0=
=t;<8;,—1) and n{;® (1=j<k=m, 0=4,<s,—1, =7, k) as in Section 3.
Also generalizing notations z{? and Z% introduced earlier, denote by
z{/*> the mean of > from all experimental units where the level 1,
of the j-th factor has been applied (0=<i,<s,—1, 1<j<m and 1=Sw<
p). Then one gets the following generalization of (4.7).

THEOREM 4.1. In the absence of factorial interactions, design satis-
fies factorial orthogonality if and only if for every 1=j<k<m and 0<
R Y4 P _ _ _ _

(4.8) n$j5:)=n"n§j>n§’;’[1+ E’l :éi twq(xgjf/w)_xm)) (xﬁt/")—az“”)}
holds.

The above is also some sort of an extension of the proportional
frequency criteria to the present set-up.
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