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Summary
Let a set of p responses y=(y,, - -, ¥,)’ has a multivariate linear
regression on a set of ¢ explanatory variables x=(z,, ---,,). Our

aim is to select the most informative subset of responses for making
inferences about an unknown x from an observed y. Under normality
on y, two selection methods, based on the asymptotic mean squared
error and on the Akaike’s information criterion, are proposed by Fuji-
koshi and Nishii (1986, Hiroshima Math. J., 16, 269-277). In this paper,
under a mild condition we will derive the cross-validation criterion and
obtain the asymptotic properties of the three procedures.

1. Introduction

Consider a linear relationship between p response variables y=
(%1, -+, ¥,)' and explanatory variables x=(x,, ---, 2,)’ such as

1.1) y=a+p'x+e,

where a:px1 is the vector of unknown parameters, B:qgxp is the
matrix of unknown parameters satisfying rank f=¢=<p, and e:px1
is an error vector having mean zero vector and unknown covariance
matrix 3. In Sections 1 and 2, we will assume that e is normally

distributed. Suppose responses y, to given x, (r=1, ---, N) are inde-
pendently observed. Set Y=[y,, - -, yxl': NXp, X=[x;, ---, xy]': NXq
and E=J[e, ---,ey]': NXp. Then we have the following multivariate

linear relationship

Y=1a'+Xp+F,

Key words: AIC, calibration, cross-validation, multivariate linear regression, variable selec-
tion.
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where 1=(1, ---,1)’: Nx1. For simplicity we assume X'1=0. The
commonly used estimates of &, 8 and 3 are

a=a=y, [=B=(X'X)"'X'Y
and S=8=1ly {IN T X(X’X)"X’} Y,
n N

where n=N—q—1>p and y=N"'31y,. The problem of calibration is
to make inference about x which corresponds to a new reading y.
The classical estimate of x is given by

1.2) %=(BS'B")"'BS-'y—7) -

In the case p=¢=1, this problem of the straight-line calibration
has been discussed by many authors, e.g., Shukla [9] and Lwin and
Maritz [5]. In the multivariate case, see Williams [10] and Brown [2].
The problem of selecting responses is important since all of responses
may not be informative. Brown [2] proposed a procedure which is
based on the test of additional information by Rao [7]. Alternatively
Fujikoshi and Nishii [4] proposed two procedures. One is based on the
asymptotic mean squared error and the other is based on Akaike’s in-
formation criterion by Akaike [1]. In this paper we propose the third
procedure based on the cross-validation criterion. Asymptotic proper-
ties of these three procedures are obtained without the assumption of
normality.

2. Definition of the true model

If all parameters @, 8 and 3 are known, a natural estimate of x
is given by

X=(B37'p)R2 (y—a) .

If the last column of B3~! equals to zero vector, the last response
variable y, is of no use for estimating x, in other words, y, is not in-

formative. Hereafter we suppose that only y,, - -, y,, are informative.
We say y;, = -, ¥p) or jo={1, --+, m} be the true model. For j=
{1 *++, Jup} being a subset of {1, ---, p}, we define a vector of size
k(9),

y.1=(y,11’ ceey yjk(j)),

where k(j) denotes the size of j. Then the classical estimate defined
in (1.2) under the model j is given by

2.1) x(5)= (BJSJ-}IBD—IBjSJ—jl(yj -y,
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where B;: gXxk(j), S,;: k(3)xk(j) and g,: k(j) X1 denote the submatrices
and the subvector of B, S and j specified by j respectively. Therefore
it is necessary that k(j)=q.

Let J be some family of subsets of {1, ---,p}. Then the problem
of variable selection may be regarded as how to select the most in-
formative subset 7 from J. Now we assume that the family J includes
the true model j,.

Remark. For joj,Dl, it holds that
B27'8'=B,27}B;=BZw'B =B 2u'B and trace (BX~'8')>trace (B, 27'B) ,

where B;: ¢ X k(j) and X,;: k(j) X k(j) denote the submatrices of 8 and ¥
respectively, fi=8;,: qX Dy, Sn=23,,,: DX D and k(jo)=p,.

Hereafter we will make the following assumption.

ASSUMPTION 1. Let Gy=N"'X'X:qxq. Then G, converges to
some positive definite matrix G as N tends to infinity, i.e., lim Gy=

N—roo
G>0.
Fujikoshi and Nishii [4] obtained the stochastic expansion of (&(7)

—x)' 4(X(3)—x) up to O, (n™') and an estimate of its expectation as
(1+N"YHM(5) where 4 is a positive definite matrix of order ¢ and

. ~1) o
M(j5)= i n(n i trace {4(B,S;B’)™'} .
) {n—k(5)+q} {n—k(5)+q—1} 577 B7) ™'}
Their procedure is to select a model j so as to minimize M(j). We

denote the selected model by 7.

The second procedure is based on Akaike’s information criterion.
The criterion is analyzed by Fujikoshi [3] in the context of discrimi-
nant analysis and the same discussion is possible for our problem. The
maximum likelihood under the model 5 is obtained by the maximum
likelihood subject to the constraints 8,.=8,3;}%,,. where j* is the com-
plement of j with respect to the full model f,,:{l,- -+, p}. Let A(y)=

AIC (j)—AIC(5,). Then A(j) is given by

)= Y'(I,—N"11)Y||S,;| .
AG)=Nog N2 —2g{p—k(5)} ,
9 ISIIY/(Iy— N-'11)) Y| 2{p—k(5)}

where Y,: N xk(j) is the submatrix of Y: Nxp. We can select the
subset of responses which minimizes A(j) and denote such index set

by ;A'
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3. Derivation of cross-validation

In Sections 1 and 2, error vectors e, are assumed to be i.i.d. as
N,[0, 3]. But to derive cross-validation, it is enough to assume

ASSUMPTION 2. Let &,=3"e, (r=1,---,N). Then E=[e, -,
ex]': Nxp is an array of N random samples from a p-variate random
vector e=(¢;,---,¢,) such that E[e]=0, Clel=1, Elell=m, Elel< o
(t=1, ---,p) and all moments up to 8th order of ¢, ---,€, are given
as if they are independently distributed, e.g., [e@l]=Cle ) e]=0.

Let &, be the estimate of x, obtained by replacing B, S and g in
(2.1) by B_,, S_, and j_,, respectively. Here B_,, S_, and j_, are the
estimates of parameters obtained by not using the r-th item. The
stochastic expansion of X,—x, are given by

ir'—x'r=u1'_|'0p(/n’_l) ’
where u,=c®Wv,+cPW(X'X)'x,, W=(BS'B")™, v,=y,—y—B'x,, ¢
—1-L S B'WBSv,+ L v/S v, + x(X'X)'WBS v, and ¢P=v/S~B’
n n

-WBS'v,—v.S"'v,. By the same argument we can construct the esti-
mate X,(j) under the model j and obtain

X.(5)—x,=u(j)+o,(n7") .
Using the matrix 4 used in the definition of M(j), we have

THEOREM 1. The stochastic expansion of éui(j)du,(j) up to O,1)
18 given by
C(j)=mn trace (4 W,)+2 trace (4H,D,H]),
where W,=(B,S;;'B})":qxq, H;=W,B,;S;;V]/:qxN, D;=DP—-DP+
D®: NXN, DS-"-——%L— diag [VS;;* V/], DS”z% diag [V,S;;B;W,B,S;;* V/],

D®=diag [%11'+X(X'X)“X’] and V,= IN—-AlTll’—X(X’X)“X’ Y,:

N xk(j). Here diag [A] denotes a diagonal matrixc whose diagonals are
the same as those of A.

The first term of C(j) can be considered as a bias caused by fit-
ting model j since trace (4 W,)<trace (4W,) for jOl. The second term
is the complexity of the selected model. When both models j and [
(1) are close to the true model, it holds that trace (4H,D,H])>trace
(4H,D,H/). We also select the subset of responses minimizing C(j)
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and denote such index set by j.

4. Asymptotic distributions of Ju, Jo and Ja

To obtain asymptotic distributions of three criteria, we need the
following assumption, besides Assumptions 1 and 2.

ASsuMPTION 3. Let ry=max {x(X'X)'x,|r=1, ---, N}. Then 7y,
converges to zero as N tends to infinity.
The following lemma is useful to examine the asymptotic behav-
iour of f,, and fg. The proof is placed in Appendix 1.
LEMMA 1. Let Ji={jeJ|j25} and W,=W,. Then for jed,
we have
nWy—nW, —— E(E-'+G)ZL|L,Z"(E"'+G)g

where E=(pX7'8'), Z:qXp, (0,=p—n) 18 a random matrix whose all
elements are i.t.d. as N(0, 1).

Here L;: (k(j)—mp) X p; is an incidence matrix of the two sets j—j,
and {p+1,---,p} for jed,, i.e., (8, Jy+:.—m)-elements of L, are given
by one (s=1,---,k(5)—»,) and all other elements are given by zero.
For example L,=(I,_,;0): (t—p)) Xp, when j={1,---, py,---,t}, t>ps.

THEOREM 2. Let Ji={jedJ|jDj}. Under Assumptions 1-3, we
have
(i) For any j in Jy, lim Pr {7,=3}=0.
(i) Let .Q:(E“+G“)‘/I;é'ZE(E'%G")W. Then for any j in J,,
@l lim Pr {7x=3} =Pr [trace {(L/L,— L,L,)Z'2Z}
<2{k(l)—Fk(3)} trace (48) for le Jy].

Proor. (i) Let j be in J;. Then by Remark following (2.1), we
have

p-lim M(j)="Pr [trace {4(8,27}8))™'} > trace {4(Bs2w'8))'}] =p-lim M(5y) -

Hence Pr{jy =7} <Pr {M(5)<M(j,)} =o(1).
(ii) Let j be in J;,. Then by Lemma 1 and Remark it holds
nM(5o) —nM(5)=mn trace {4(W,— W)} +2(p,—q) trace (4 W,)
—2(k(5)—q) trace (4 W;)+o0,(1)
=trace (L}L;Z'27Z)+2(p,— k(J)) trace (45)+o0,1) .

This completes the proof.
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The following lemma will be proved in Appendix 2.

LEMMA 2. The second term of C(j) is asymptotically evaluated as
p-}vim H,D,H]=(k(5)+1)&

for jed, where H, and D, are defined in Theorem 1.
THEOREM 3. Theorem 2 remains valid if jx is replaced by 7o
Proor. (i) The leading term of %C(j) is trace (4W,), which is

also the leading term of M(j). Therefore the similar discussion shows
that lim Pr {jo=4} =0 for jeJ..
N—oo

(i) Let j be in J,. Then by Remark, Lemmas 1 and 2, it holds that

C(4o) —C(j)=n trace {4(W,— W))} +2(p,+1) trace {4(82x'5) "}
—2(k(5)+1) trace {4(8,27]87) 7'} +0,(1)
=trace (L;L,Z'27Z)+2(p,— k(j)) trace (42)+0,(1) .

For 7., Fujikoshi [3] obtained a theorem on the asymptotic dis-
tribution in the context of discriminant analysis under Assumption 1
and normality. Although Assumptions 2 and 3 are weaker than the
normality assumption, his theorem still remains valid.

THEOREM 4. Let K(j)=0 and K(j)=3""2L)(L,3-'L;)'L,5"": p,x
p, where j€dy, 3=3,— 3353 o Xp; and 3= [2"" 2‘01]' Then we

ha 10 11
ve
(i) For any j in J, lim Pr{j,=4}=0.

(iiy For any j in J,,

4.2) lim Pr{f, =4} =Pr [trace [{K()— K(j)} Z'Z] <2q {k()—k(4)}
o Jor ledy],

where Z 1s defined in Lemma 1.

Note that the formula (4.1) depends on 4, G and the matrix of
unknown parameters 5=(82"!8')"!. After a suitable orthogonal trans-
formation, we have

trace (L/L,2'9Z) =31 3} 02’ ,
t=1 8=1
with r=Fk(j)—p,. Here w,>0 are the eigenvalues of the unknown
matrix 2 and z, are i.i.d. as N(0,1). Thus it is not easy to reduce
(4.1) into a simple form. On the other hand, (4.2) depends only on
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3=3,—3,3x3y, and trace (K(j)Z'Z) has the chi-square distribution
with q(k(j)—p,) degrees of freedom. When J consists of hierarchic
models J={j,, -+, j,} with 7,={1, ---,t}, the exact formula of (4.2)
is obtained by Fujikoshi [3], which is essentially due to Shibata [8].

When J is all subsets such as J={j<j,|k(j)=q} and 5 is diagonal,
(4.2) is simplified as

lim Pr {f4=j} =[Pr {x;g2q}]"""p0[Pr {X3<2Q} ],
N—oo

for jedJ,. This formula is essentially due to Nishii [6].

5. Asymptotic properties in general case

Up to this point, our study is restricted to the case when the re-
gression model has a constant term &, which corresponds to an ex-
planatory variable 1. New we generalize (1.1) to

(5.1) y=d'x,+px+e,

where a and B are ¢,Xxp» and ¢Xp matrices of full rank respectively.
Our problem here is to estimate x when y:px1 is observed and x,: g,
x1 is given. This situation is typical in the missing-data problem.
We define X;: NXqy=[xy, -+, Xy’ and X: NXxq=[x, :--,xy]’. For
simplicity suppose X/X =0, rank X;=q, and rank X=q. Natural esti-
mates of @, 8 and 3 are:

a=A=(X!X)"'X!Y, p=B=(X'X)"'X'Y and
2‘:3:% Y {Iy— Xy(X{ X)) X! — X (X' X)X} Y,

where m=N—q,—q¢>p. Then the estimate of the unknown vector of
explanatory variables x is given by

X=(BS-'B')'BS(y—A'x,) .
In this situation Assumption 1 is modified as

AsSUMPTION 4. The matrices N'X/X, and Gy=N"'X'X converges
to positive definite matrices as N tends to infinity respectively, say G

N-—oo

By suitable analogue we can derive the criteria as

) — m(m_l) -1R-1
= ko) -k ra—Ty oce UBSTE),

C*(7)=m trace {4(B;S;;}B))"'} +2 trace (4H;*D*H}') ,
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N S+B'G4B||S,,| :
A*(j)=Nlog wBlISil_og(p—k(j)},
|S||S,,+B§GNB,| { &2

where H}¥=(B,;S;;}B))"'B;S;;V}:qxN and V}={I,—X(X{X,)'X{—

X(X'X)'X'}Y,: Nxk(j). Here Df is obtained by replacing V, to V}

in D, described in Theorem 1. We say Juwe=7 when M *(7)=min M*(l),
ledJ

and _1,, and ,7A are defined in the similar way. Finally we make

AssuMPTION 5. The value max {x/,(X{Xy) "%, +xU(X'X) %, |r=1,
.++, N} converges to zero as N tends to infinity.

Assumptions 4 and 5 are not so restrictive and they are satisfied
when X;=1. It is not so difficult to check that the following theorem
holds true.

THEOREM 6. Under Assumptions 2, 4 and 5, the asymptotic dis-

tributions of f,,., fc. and .7,, are same as those of f,, fg and fA ob-
tained by Theorems 2, 3 and 4 respectively.
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Appendix 1

Proof of Lemma 1
To prove Lemma 1, we use the following

PROPOSITION. Let E=[E,, E=[e.]: Nxp (E,: Nxn) be an array
of N random samples defined in Assumption 2, and let X: NXq be a
matriz of full rank satisfying Assumption 1. Define {=N""E,E!: p,

Xp, (p=p—m) and £=(X'X)"*X'E,: qxp,. Then all elements of ran-
dom matrices { and & are asymptotically i.i.d. as N(O, 1).

ProOF. Consider the joint characteristic function of { and &,
¢(T, U)=C[exp {4 trace (T'C+ U'§H},

where T'=[t,]: pyXp, and U=[u,, - -+, u,]: ¢Xp,. The first four cumu-
lants of trace (T'C+ U’¢) are given by
k=0, k,=trace(T'T+U'U), k=0 and

Py P

N D
(A1) x4=1—\1,— 2SSt S S (X X))
k=11=1 r=18=1

By Assumption 2 and Schwarz’s inequality, the second term of the
right hand side in (A.l) is dominated by

141
e 2 (wiu,)t[max {x(X'X)"'x,|r=1,-+, N}I’=0(z%) ,
s=1
where r is defined in Assumption 3. This implies
log ¢(T, U)= —% trace (T'T+ U'U)+O(N 1) +0(z%) »

completing the proof.

Iy O
Flo Fu
that I}, is a lower triangular matrix of order p, and I'3I"=1I, De-
fine B=pI", B=BI", S=I'SI", E=[E,, E] and {=(X'X)""X'E,. For
j€dy B, is a submatrix of B, =8, and so on. Since j, is the true
model, 3=[B,, 0]. Thus

B,=[B,, (X'X)"“E,L,): ¢xk(j) and
B,S;;}B,=B,Sx'B;
+ {BoSe*Su— (X' X )2y} ngj_jl-oL§ {SuSx'B,— EN(X' X))

PrOOF OF LEMMA 1. Let I’={ ]:pxp be a matrix such
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= B,S5Bi+-L (B —G-)L, L} (Bl — G-€) +o0 (i)
N JHF P N

where L, is defined in Lemma 1, {=N""E/E, and S,,.,=S,,—S,:Sx'S,;-
Thus we have
MBS By) ™ —n(B, S5 B}) "' = E(Bt — G~ )L} L (Bt — GV E+0,(1)
— 8(8'+GYWZL,L,Z'(E"'+G ) E

where Z:qXp, is a random matrix whose all elements are i.i.d. as
N(0, 1).

Appendix 2

Proof of Lemma 2

Obviously, S,, and B,S;j;'B} converge in probability to I, and 3,3,
respectively. Define '

T,: px p=E' diag [E(E'E)"'E"|E,
Ty: pXPp= %E_" diag [EB'(BB')'BE']1E and

T,: pxp:E’[l%ll’+X(X’X)“X’]E.
To prove Lemma 2, it is sufficient to show that
(i) T —— -1+,
(i) T, —— (g—1+p)FBF) "8 and
(i) Ty —— (@+D)I,.
(i) Let W=(w,)=(N"'E'E)". Then W —— I,. The k-th diagonal
element of T, is

1 o4 h 3 73 S5 5
(Tl)kkzﬁ[wkk 1§1 erk+ 2 Ws 2 erken+2 2 w:k El €r€ric

sxk r=1 sxk

N
+ 2 'wu Z 6#3':67:] .
Sktxk¥s r=1

By law of large numbers, (7). . #+p—1. Similar discussion leads

us to (T)e —— 0 for kL.
(ii) Since rank 8=gq, there exists a non-singular matrix 7:q¢xq and
an orthogonal matrix F=[F,;V,] of order p(V,: pxp,) such that B=

[T;01/'=TF,. Transform E by V as W=EV =[W,; W,]: Nxp. Then
B(BB)'B=rFi and T,=F[W,; W\l diag [W,W/][W,; W,]r" .
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By similar arguments as in the proof of (i), it holds that
T, —— (@—1+p)VoFi=(a—1+p)B'BE)'B .
(iii) The (k, l)-element of T is given by

N
(Tu= 33 [ O+ %X X) 5, i

where 3,, is Kronecker’s delta. When k=, &[(Ty)w]=9+1 and the
2
variance of (7). is equal to f‘i{ﬁl-+x£(X’X)“x,} S@+1DN )=

O(ry). Similarly we have (T%),, —2. 0 when k+l.



